13,748 research outputs found

    Simulation in Statistics

    Full text link
    Simulation has become a standard tool in statistics because it may be the only tool available for analysing some classes of probabilistic models. We review in this paper simulation tools that have been specifically derived to address statistical challenges and, in particular, recent advances in the areas of adaptive Markov chain Monte Carlo (MCMC) algorithms, and approximate Bayesian calculation (ABC) algorithms.Comment: Draft of an advanced tutorial paper for the Proceedings of the 2011 Winter Simulation Conferenc

    Adaptive approximate Bayesian computation for complex models

    Full text link
    Approximate Bayesian computation (ABC) is a family of computational techniques in Bayesian statistics. These techniques allow to fi t a model to data without relying on the computation of the model likelihood. They instead require to simulate a large number of times the model to be fi tted. A number of re finements to the original rejection-based ABC scheme have been proposed, including the sequential improvement of posterior distributions. This technique allows to de- crease the number of model simulations required, but it still presents several shortcomings which are particu- larly problematic for costly to simulate complex models. We here provide a new algorithm to perform adaptive approximate Bayesian computation, which is shown to perform better on both a toy example and a complex social model.Comment: 14 pages, 5 figure

    Approximate Bayesian Computation by Subset Simulation

    Get PDF
    A new Approximate Bayesian Computation (ABC) algorithm for Bayesian updating of model parameters is proposed in this paper, which combines the ABC principles with the technique of Subset Simulation for efficient rare-event simulation, first developed in S.K. Au and J.L. Beck [1]. It has been named ABC- SubSim. The idea is to choose the nested decreasing sequence of regions in Subset Simulation as the regions that correspond to increasingly closer approximations of the actual data vector in observation space. The efficiency of the algorithm is demonstrated in two examples that illustrate some of the challenges faced in real-world applications of ABC. We show that the proposed algorithm outperforms other recent sequential ABC algorithms in terms of computational efficiency while achieving the same, or better, measure of ac- curacy in the posterior distribution. We also show that ABC-SubSim readily provides an estimate of the evidence (marginal likelihood) for posterior model class assessment, as a by-product

    Bayesian subset simulation

    Full text link
    We consider the problem of estimating a probability of failure α\alpha, defined as the volume of the excursion set of a function f:X⊆Rd→Rf:\mathbb{X} \subseteq \mathbb{R}^{d} \to \mathbb{R} above a given threshold, under a given probability measure on X\mathbb{X}. In this article, we combine the popular subset simulation algorithm (Au and Beck, Probab. Eng. Mech. 2001) and our sequential Bayesian approach for the estimation of a probability of failure (Bect, Ginsbourger, Li, Picheny and Vazquez, Stat. Comput. 2012). This makes it possible to estimate α\alpha when the number of evaluations of ff is very limited and α\alpha is very small. The resulting algorithm is called Bayesian subset simulation (BSS). A key idea, as in the subset simulation algorithm, is to estimate the probabilities of a sequence of excursion sets of ff above intermediate thresholds, using a sequential Monte Carlo (SMC) approach. A Gaussian process prior on ff is used to define the sequence of densities targeted by the SMC algorithm, and drive the selection of evaluation points of ff to estimate the intermediate probabilities. Adaptive procedures are proposed to determine the intermediate thresholds and the number of evaluations to be carried out at each stage of the algorithm. Numerical experiments illustrate that BSS achieves significant savings in the number of function evaluations with respect to other Monte Carlo approaches

    Unbiased and Consistent Nested Sampling via Sequential Monte Carlo

    Full text link
    We introduce a new class of sequential Monte Carlo methods called Nested Sampling via Sequential Monte Carlo (NS-SMC), which reframes the Nested Sampling method of Skilling (2006) in terms of sequential Monte Carlo techniques. This new framework allows convergence results to be obtained in the setting when Markov chain Monte Carlo (MCMC) is used to produce new samples. An additional benefit is that marginal likelihood estimates are unbiased. In contrast to NS, the analysis of NS-SMC does not require the (unrealistic) assumption that the simulated samples be independent. As the original NS algorithm is a special case of NS-SMC, this provides insights as to why NS seems to produce accurate estimates despite a typical violation of its assumptions. For applications of NS-SMC, we give advice on tuning MCMC kernels in an automated manner via a preliminary pilot run, and present a new method for appropriately choosing the number of MCMC repeats at each iteration. Finally, a numerical study is conducted where the performance of NS-SMC and temperature-annealed SMC is compared on several challenging and realistic problems. MATLAB code for our experiments is made available at https://github.com/LeahPrice/SMC-NS .Comment: 45 pages, some minor typographical errors fixed since last versio

    On computational tools for Bayesian data analysis

    Full text link
    While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte Carlo methods and more recently Approximate Bayesian Computation techniques have considerably increased the potential for Bayesian applications and they have also opened new avenues for Bayesian inference, first and foremost Bayesian model choice.Comment: This is a chapter for the book "Bayesian Methods and Expert Elicitation" edited by Klaus Bocker, 23 pages, 9 figure
    • …
    corecore