139 research outputs found

    Gaining Insights into Denoising by Inpainting

    Full text link
    The filling-in effect of diffusion processes is a powerful tool for various image analysis tasks such as inpainting-based compression and dense optic flow computation. For noisy data, an interesting side effect occurs: The interpolated data have higher confidence, since they average information from many noisy sources. This observation forms the basis of our denoising by inpainting (DbI) framework. It averages multiple inpainting results from different noisy subsets. Our goal is to obtain fundamental insights into key properties of DbI and its connections to existing methods. Like in inpainting-based image compression, we choose homogeneous diffusion as a very simple inpainting operator that performs well for highly optimized data. We propose several strategies to choose the location of the selected pixels. Moreover, to improve the global approximation quality further, we also allow to change the function values of the noisy pixels. In contrast to traditional denoising methods that adapt the operator to the data, our approach adapts the data to the operator. Experimentally we show that replacing homogeneous diffusion inpainting by biharmonic inpainting does not improve the reconstruction quality. This again emphasizes the importance of data adaptivity over operator adaptivity. On the foundational side, we establish deterministic and probabilistic theories with convergence estimates. In the non-adaptive 1-D case, we derive equivalence results between DbI on shifted regular grids and classical homogeneous diffusion filtering via an explicit relation between the density and the diffusion time

    Application and Prospect of Telesurgery: The Role of Artificial Intelligence

    Get PDF
    Remote surgery refers to a new surgical mode in which doctors operate on patients with the help of surgical robots, network technology, and virtual reality technology. These robots are located far away from patients. The remote surgical robot system integrates key technologies such as robot, communication technology, remote control technology, space mapping algorithm, and fault tolerance analysis. Apply a variety of emerging networking modes such as 5G, optical fiber private network, fusion network technology, and deterministic network to realize the motion of the subordinate surgical robot and the vision of the main knife, and ensure stable signal transmission and safe remote operation. The development and application of remote surgical robots has become a new trend, which helps to break the barriers of unbalanced regional medical resource allocation, promote the rational allocation of high-quality medical resources, and solve the telemedicine problems in special areas and special circumstances. The development prospect is broad. In the future, relying on the 5G network technology with high speed, low power consumption, and low latency, remote surgery can operate more efficiently and stably, and the surgical robot will also develop toward a more portable and flexible direction, so as to better serve patients

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Towards a data-driven treatment of epilepsy: computational methods to overcome low-data regimes in clinical settings

    Get PDF
    Epilepsy is the most common neurological disorder, affecting around 1 % of the population. One third of patients with epilepsy are drug-resistant. If the epileptogenic zone can be localized precisely, curative resective surgery may be performed. However, only 40 to 70 % of patients remain seizure-free after surgery. Presurgical evaluation, which in part aims to localize the epileptogenic zone (EZ), is a complex multimodal process that requires subjective clinical decisions, often relying on a multidisciplinary team’s experience. Thus, the clinical pathway could benefit from data-driven methods for clinical decision support. In the last decade, deep learning has seen great advancements due to the improvement of graphics processing units (GPUs), the development of new algorithms and the large amounts of generated data that become available for training. However, using deep learning in clinical settings is challenging as large datasets are rare due to privacy concerns and expensive annotation processes. Methods to overcome the lack of data are especially important in the context of presurgical evaluation of epilepsy, as only a small proportion of patients with epilepsy end up undergoing surgery, which limits the availability of data to learn from. This thesis introduces computational methods that pave the way towards integrating data-driven methods into the clinical pathway for the treatment of epilepsy, overcoming the challenge presented by the relatively small datasets available. We used transfer learning from general-domain human action recognition to characterize epileptic seizures from video–telemetry data. We developed a software framework to predict the location of the epileptogenic zone given seizure semiologies, based on retrospective information from the literature. We trained deep learning models using self-supervised and semi-supervised learning to perform quantitative analysis of resective surgery by segmenting resection cavities on brain magnetic resonance images (MRIs). Throughout our work, we shared datasets and software tools that will accelerate research in medical image computing, particularly in the field of epilepsy

    Analysis, Development And Design For Early Fault Detection And Fire Safety In Lithium-Ion Battery Technology

    Get PDF
    Energy storage technologies in its natural form play a key role in the electrical infrastructure, renewable and mobility industry. This form includes the material nomenclature for cell. technology, battery module design, Battery enclosure system design, control, and communication strategy, chemistry profile of various cell technologies, formation and formfactors of cell structure, electrical and mechanical properties of a lithium-ion cell, behavior of the cell under high voltage, low voltage, elevated temperature and lower temperature, multiple charging of a lithium-ion batteries. Energy storage industry is growing rapidly, and the industry is experiencing an unprecedented safety concern and issues in terms of fire and explosion at cell and system level. There has been. other research conducted with proposed theories and recommendations to resolve these issues. The failure modes for energy storage systems can be derived using different methodologies such as failure mode effects analysis (FMEA). Early detection mode and strategies in lithium-ion batteries to overcome the failure modes can be caused by endothermic reaction in the cell, further protection. devices, fire inhibition and ventilation. Endothermic safety involves modifications of materials in anode, cathode, and electrolyte. Chemical components added to the battery electrolyte improve the characteristics helping in the improvement of solid-electrolyte interphase and stability. Traditional energy storage system protection device fuse at the cell level, and contactors at the rack level and circuit breakers, current interrupt devices, and positive temperature coefficient devices at the system level. This research will employ classical experimental methods to explore, review and evaluate all the five main energy technologies and narrow down to electrochemical energy storage technologies. with the two main market ready lithium-ion battery technology (LiFePO4/ G and NMC/G) technology cells and why are they valuable in the energy storage and E-mobility space. Also, will focus on the electrical, mechanical design, testing of the battery module into a rack system, advancements in battery chemistries, relevant modes, mechanisms of potential failures, and early detection strategies to overcome these failures. Finally, how the problems of fires, safety concerns and difficulty in transporting already fully assembled energy storage systems can be resolved and be demystified in lithium-ion technology. Keywords Control strategy, Energy storage system, electrolyte, failure mode, early detection, Lithium-Ion cell technology, Battey system

    HiNeRV: Video Compression with Hierarchical Encoding-based Neural Representation

    Full text link
    Learning-based video compression is currently a popular research topic, offering the potential to compete with conventional standard video codecs. In this context, Implicit Neural Representations (INRs) have previously been used to represent and compress image and video content, demonstrating relatively high decoding speed compared to other methods. However, existing INR-based methods have failed to deliver rate quality performance comparable with the state of the art in video compression. This is mainly due to the simplicity of the employed network architectures, which limit their representation capability. In this paper, we propose HiNeRV, an INR that combines light weight layers with novel hierarchical positional encodings. We employs depth-wise convolutional, MLP and interpolation layers to build the deep and wide network architecture with high capacity. HiNeRV is also a unified representation encoding videos in both frames and patches at the same time, which offers higher performance and flexibility than existing methods. We further build a video codec based on HiNeRV and a refined pipeline for training, pruning and quantization that can better preserve HiNeRV's performance during lossy model compression. The proposed method has been evaluated on both UVG and MCL-JCV datasets for video compression, demonstrating significant improvement over all existing INRs baselines and competitive performance when compared to learning-based codecs (72.3% overall bit rate saving over HNeRV and 43.4% over DCVC on the UVG dataset, measured in PSNR)

    Deep spatial and tonal data optimisation for homogeneous diffusion inpainting

    Get PDF
    Difusion-based inpainting can reconstruct missing image areas with high quality from sparse data, provided that their location and their values are well optimised. This is particularly useful for applications such as image compression, where the original image is known. Selecting the known data constitutes a challenging optimisation problem, that has so far been only investigated with model-based approaches. So far, these methods require a choice between either high quality or high speed since qualitatively convincing algorithms rely on many time-consuming inpaintings. We propose the frst neural network architecture that allows fast optimisation of pixel positions and pixel values for homogeneous difusion inpainting. During training, we combine two optimisation networks with a neural network-based surrogate solver for difusion inpainting. This novel concept allows us to perform backpropagation based on inpainting results that approximate the solution of the inpainting equation. Without the need for a single inpainting during test time, our deep optimisation accelerates data selection by more than four orders of magnitude compared to common model-based approaches. This provides real-time performance with high quality results

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs
    corecore