96 research outputs found

    Towards A Computational Intelligence Framework in Steel Product Quality and Cost Control

    Get PDF
    Steel is a fundamental raw material for all industries. It can be widely used in vari-ous fields, including construction, bridges, ships, containers, medical devices and cars. However, the production process of iron and steel is very perplexing, which consists of four processes: ironmaking, steelmaking, continuous casting and rolling. It is also extremely complicated to control the quality of steel during the full manufacturing pro-cess. Therefore, the quality control of steel is considered as a huge challenge for the whole steel industry. This thesis studies the quality control, taking the case of Nanjing Iron and Steel Group, and then provides new approaches for quality analysis, manage-ment and control of the industry. At present, Nanjing Iron and Steel Group has established a quality management and control system, which oversees many systems involved in the steel manufacturing. It poses a high statistical requirement for business professionals, resulting in a limited use of the system. A lot of data of quality has been collected in each system. At present, all systems mainly pay attention to the processing and analysis of the data after the manufacturing process, and the quality problems of the products are mainly tested by sampling-experimental method. This method cannot detect product quality or predict in advance the hidden quality issues in a timely manner. In the quality control system, the responsibilities and functions of different information systems involved are intricate. Each information system is merely responsible for storing the data of its corresponding functions. Hence, the data in each information system is relatively isolated, forming a data island. The iron and steel production process belongs to the process industry. The data in multiple information systems can be combined to analyze and predict the quality of products in depth and provide an early warning alert. Therefore, it is necessary to introduce new product quality control methods in the steel industry. With the waves of industry 4.0 and intelligent manufacturing, intelligent technology has also been in-troduced in the field of quality control to improve the competitiveness of the iron and steel enterprises in the industry. Applying intelligent technology can generate accurate quality analysis and optimal prediction results based on the data distributed in the fac-tory and determine the online adjustment of the production process. This not only gives rise to the product quality control, but is also beneficial to in the reduction of product costs. Inspired from this, this paper provide in-depth discussion in three chapters: (1) For scrap steel to be used as raw material, how to use artificial intelligence algorithms to evaluate its quality grade is studied in chapter 3; (2) the probability that the longi-tudinal crack occurs on the surface of continuous casting slab is studied in chapter 4;(3) The prediction of mechanical properties of finished steel plate in chapter 5. All these 3 chapters will serve as the technical support of quality control in iron and steel production

    Genetic optimization of energy- and failure-aware continuous production scheduling in pasta manufacturing

    Get PDF
    Energy and failure are separately managed in scheduling problems despite the commonalities between these optimization problems. In this paper, an energy- and failure-aware continuous production scheduling problem (EFACPS) at the unit process level is investigated, starting from the construction of a centralized combinatorial optimization model combining energy saving and failure reduction. Traditional deterministic scheduling methods are difficult to rapidly acquire an optimal or near-optimal schedule in the face of frequent machine failures. An improved genetic algorithm (IGA) using a customized microbial genetic evolution strategy is proposed to solve the EFACPS problem. The IGA is integrated with three features: Memory search, problem-based randomization, and result evaluation. Based on real production cases from Soubry N.V., a large pasta manufacturer in Belgium, Monte Carlo simulations (MCS) are carried out to compare the performance of IGA with a conventional genetic algorithm (CGA) and a baseline random choice algorithm (RCA). Simulation results demonstrate a good performance of IGA and the feasibility to apply it to EFACPS problems. Large-scale experiments are further conducted to validate the effectiveness of IGA

    Multi-population-based differential evolution algorithm for optimization problems

    Get PDF
    A differential evolution (DE) algorithm is an evolutionary algorithm for optimization problems over a continuous domain. To solve high dimensional global optimization problems, this work investigates the performance of differential evolution algorithms under a multi-population strategy. The original DE algorithm generates an initial set of suitable solutions. The multi-population strategy divides the set into several subsets. These subsets evolve independently and connect with each other according to the DE algorithm. This helps in preserving the diversity of the initial set. Furthermore, a comparison of combination of different mutation techniques on several optimization algorithms is studied to verify their performance. Finally, the computational results on the arbitrarily generated experiments, reveal some interesting relationship between the number of subpopulations and performance of the DE. Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. In this problem, the above algorithm is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed algorithm is one of effective and promising methods for optimal EV centralized charging

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes

    Prescriptive Control of Business Processes - New Potentials Through Predictive Analytics of Big Data in the Process Manufacturing Industry

    Get PDF
    This paper proposes a concept for a prescriptive control of business processes by using event-based process predictions. In this regard, it explores new potentials through the application of predictive analytics to big data while focusing on production planning and control in the context of the process manufacturing industry. This type of industry is an adequate application domain for the conceived concept, since it features several characteristics that are opposed to conventional industries such as assembling ones. These specifics include divergent and cyclic material flows, high diversity in end products’ qualities, as well as non-linear production processes that are not fully controllable. Based on a case study of a German steel producing company – a typical example of the process industry – the work at hand outlines which data becomes available when using state-of-the-art sensor technology and thus providing the required basis to realize the proposed concept. However, a consideration of the data size reveals that dedicated methods of big data analytics are required to tap the full potential of this data. Consequently, the paper derives seven requirements that need to be addressed for a successful implementation of the concept. Additionally, the paper proposes a generic architecture of prescriptive enterprise systems. This architecture comprises five building blocks of a system that is capable to detect complex event patterns within a multi-sensor environment, to correlate them with historical data and to calculate predictions that are finally used to recommend the best course of action during process execution in order to minimize or maximize certain key performance indicators

    Process Modeling in Pyrometallurgical Engineering

    Get PDF
    The Special Issue presents almost 40 papers on recent research in modeling of pyrometallurgical systems, including physical models, first-principles models, detailed CFD and DEM models as well as statistical models or models based on machine learning. The models cover the whole production chain from raw materials processing through the reduction and conversion unit processes to ladle treatment, casting, and rolling. The papers illustrate how models can be used for shedding light on complex and inaccessible processes characterized by high temperatures and hostile environment, in order to improve process performance, product quality, or yield and to reduce the requirements of virgin raw materials and to suppress harmful emissions

    Data mining for fault diagnosis in steel making process under industry 4.0

    Get PDF
    The concept of Industry 4.0 (I4.0) refers to the intelligent networking of machines and processes in the industry, which is enabled by cyber-physical systems (CPS) - a technology that utilises embedded networked systems to achieve intelligent control. CPS enable full traceability of production processes as well as comprehensive data assignments in real-time. Through real-time communication and coordination between "manufacturing things", production systems, in the form of Cyber-Physical Production Systems (CPPS), can make intelligent decisions. Meanwhile, with the advent of I4.0, it is possible to collect heterogeneous manufacturing data across various facets for fault diagnosis by using the industrial internet of things (IIoT) techniques. Under this data-rich environment, the ability to diagnose and predict production failures provides manufacturing companies with a strategic advantage by reducing the number of unplanned production outages. This advantage is particularly desired for steel-making industries. As a consecutive and compact manufacturing process, process downtime is a major concern for steel-making companies since most of the operations should be conducted within a certain temperature range. In addition, steel-making consists of complex processes that involve physical, chemical, and mechanical elements, emphasising the necessity for data-driven approaches to handle high-dimensionality problems. For a modern steel-making plant, various measurement devices are deployed throughout this manufacturing process with the advancement of I4.0 technologies, which facilitate data acquisition and storage. However, even though data-driven approaches are showing merits and being widely applied in the manufacturing context, how to build a deep learning model for fault prediction in the steel-making process considering multiple contributing facets and its temporal characteristic has not been investigated. Additionally, apart from the multitudinous data, it is also worthwhile to study how to represent and utilise the vast and scattered distributed domain knowledge along the steel-making process for fault modelling. Moreover, state-of-the-art does not iv Abstract address how such accumulated domain knowledge and its semantics can be harnessed to facilitate the fusion of multi-sourced data in steel manufacturing. In this case, the purpose of this thesis is to pave the way for fault diagnosis in steel-making processes using data mining under I4.0. This research is structured according to four themes. Firstly, different from the conventional data-driven research that only focuses on modelling based on numerical production data, a framework for data mining for fault diagnosis in steel-making based on multi-sourced data and knowledge is proposed. There are five layers designed in this framework, which are multi-sourced data and knowledge acquisition, data and knowledge processing, KG construction and graphical data transformation, KG-aided modelling for fault diagnosis and decision support for steel manufacturing. Secondly, another of the purposes of this thesis is to propose a predictive, data-driven approach to model severe faults in the steel-making process, where the faults are usually with multi-faceted causes. Specifically, strip breakage in cold rolling is selected as the modelling target since it is a typical production failure with serious consequences and multitudinous factors contributing to it. In actual steel-making practice, if such a failure can be modelled on a micro-level with an adequately predicted window, a planned stop action can be taken in advance instead of a passive fast stop which will often result in severe damage to equipment. In this case, a multifaceted modelling approach with a sliding window strategy is proposed. First, historical multivariate time-series data of a cold rolling process were extracted in a run-to-failure manner, and a sliding window strategy was adopted for data annotation. Second, breakage-centric features were identified from physics-based approaches, empirical knowledge and data-driven features. Finally, these features were used as inputs for strip breakage modelling using a Recurrent Neural Network (RNN). Experimental results have demonstrated the merits of the proposed approach. Thirdly, among the heterogeneous data surrounding multi-faceted concepts in steelmaking, a significant amount of data consists of rich semantic information, such as technical documents and production logs generated through the process. Also, there Abstract v exists vast domain knowledge regarding the production failures in steel-making, which has a long history. In this context, proper semantic technologies are desired for the utilisation of semantic data and domain knowledge in steel-making. In recent studies, a Knowledge Graph (KG) displays a powerful expressive ability and a high degree of modelling flexibility, making it a promising semantic network. However, building a reliable KG is usually time-consuming and labour-intensive, and it is common that KG needs to be refined or completed before using in industrial scenarios. In this case, a fault-centric KG construction approach is proposed based on a hierarchy structure refinement and relation completion. Firstly, ontology design based on hierarchy structure refinement is conducted to improve reliability. Then, the missing relations between each couple of entities were inferred based on existing knowledge in KG, with the aim of increasing the number of edges that complete and refine KG. Lastly, KG is constructed by importing data into the ontology. An illustrative case study on strip breakage is conducted for validation. Finally, multi-faceted modelling is often conducted based on multi-sourced data covering indispensable aspects, and information fusion is typically applied to cope with the high dimensionality and data heterogeneity. Besides the ability for knowledge management and sharing, KG can aggregate the relationships of features from multiple aspects by semantic associations, which can be exploited to facilitate the information fusion for multi-faceted modelling with the consideration of intra-facets relationships. In this case, process data is transformed into a stack of temporal graphs under the faultcentric KG backbone. Then, a Graph Convolutional Networks (GCN) model is applied to extract temporal and attribute correlation features from the graphs, with a Temporal Convolution Network (TCN) to conduct conceptual modelling using these features. Experimental results derived using the proposed approach, and GCN-TCN reveal the impacts of the proposed KG-aided fusion approach. This thesis aims to research data mining in steel-making processes based on multisourced data and scattered distributed domain knowledge, which provides a feasibility study for achieving Industry 4.0 in steel-making, specifically in support of improving quality and reducing costs due to production failures
    • …
    corecore