744 research outputs found

    Intelligent Advancements in Location Management and C-RAN Power-Aware Resource Allocation

    Get PDF
    The evolving of cellular networks within the last decade continues to focus on delivering a robust and reliable means to cope with the increasing number of users and demanded capacity. Recent advancements of cellular networks such as Long-Term Evolution (LTE) and LTE-advanced offer a remarkable high bandwidth connectivity delivered to the users. Signalling overhead is one of the vital issues that impact the cellular behavior. Causing a significant load in the core network hence effecting the cellular network reliability. Moreover, the signaling overhead decreases the Quality of Experience (QoE) of users. The first topic of the thesis attempts to reduce the signaling overhead by developing intelligent location management techniques that minimize paging and Tracking Area Update (TAU) signals. Consequently, the corresponding optimization problems are formulated. Furthermore, several techniques and heuristic algorithms are implemented to solve the formulated problems. Additionally, network scalability has become a challenging aspect that has been hindered by the current network architecture. As a result, Cloud Radio Access Networks (C-RANs) have been introduced as a new trend in wireless technologies to address this challenge. C-RAN architecture consists of: Remote Radio Head (RRH), Baseband Unit (BBU), and the optical network connecting them. However, RRH-to-BBU resource allocation can cause a significant downgrade in efficiency, particularly the allocation of the computational resources in the BBU pool to densely deployed small cells. This causes a vast increase in the power consumption and wasteful resources. Therefore, the second topic of the thesis discusses C-RAN infrastructure, particularly where a pool of BBUs are gathered to process the computational resources. We argue that there is a need of optimizing the processing capacity in order to minimize the power consumption and increase the overall system efficiency. Consequently, the optimal allocation of computational resources between the RRHs and BBUs is modeled. Furthermore, in order to get an optimal RRH-to-BBU allocation, it is essential to have an optimal physical resource allocation for users to determine the required computational resources. For this purpose, an optimization problem that models the assignment of resources at these two levels (from physical resources to users and from RRHs to BBUs) is formulated

    Contextual Bandit Modeling for Dynamic Runtime Control in Computer Systems

    Get PDF
    Modern operating systems and microarchitectures provide a myriad of mechanisms for monitoring and affecting system operation and resource utilization at runtime. Dynamic runtime control of these mechanisms can tailor system operation to the characteristics and behavior of the current workload, resulting in improved performance. However, developing effective models for system control can be challenging. Existing methods often require extensive manual effort, computation time, and domain knowledge to identify relevant low-level performance metrics, relate low-level performance metrics and high-level control decisions to workload performance, and to evaluate the resulting control models. This dissertation develops a general framework, based on the contextual bandit, for describing and learning effective models for runtime system control. Random profiling is used to characterize the relationship between workload behavior, system configuration, and performance. The framework is evaluated in the context of two applications of progressive complexity; first, the selection of paging modes (Shadow Paging, Hardware-Assisted Page) in the Xen virtual machine memory manager; second, the utilization of hardware memory prefetching for multi-core, multi-tenant workloads with cross-core contention for shared memory resources, such as the last-level cache and memory bandwidth. The resulting models for both applications are competitive in comparison to existing runtime control approaches. For paging mode selection, the resulting model provides equivalent performance to the state of the art while substantially reducing the computation requirements of profiling. For hardware memory prefetcher utilization, the resulting models are the first to provide dynamic control for hardware prefetchers using workload statistics. Finally, a correlation-based feature selection method is evaluated for identifying relevant low-level performance metrics related to hardware memory prefetching

    Mobility Management, Quality of Service, and Security in the Design of Next Generation Wireless Network

    Full text link
    The next generation wireless network needs to provide seamless roaming among various access technologies in a heterogeneous environment. In allowing users to access any system at anytime and anywhere, the performance of mobility-enabled protocols is important. While Mobile IPv6 is generally used to support macro-mobility, integrating Mobile IPv6 with Session Initiation Protocol (SIP) to support IP traffic will lead to improved mobility performance. Advanced resource management techniques will ensure Quality of Service (QoS) during real-time mobility within the Next Generation Network (NGN) platform. The techniques may use a QoS Manager to allow end-to-end coordination and adaptation of Quality of Service. The function of the QoS Manager also includes dynamic allocation of resources during handover. Heterogeneous networks raise many challenges in security. A security entity can be configured within the QoS Manager to allow authentication and to maintain trust relationships in order to minimize threats during system handover. The next generation network needs to meet the above requirements of mobility, QoS, and security

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • …
    corecore