326 research outputs found

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    A New Framework For Qos Provisioning In Wireless Lans Using The P-persistent Mac Protocol

    Get PDF
    The support of multimedia traffic over IEEE 802.11 wireless local area networks (WLANs) has recently received considerable attention. This dissertation has proposed a new framework that provides efficient channel access, service differentiation and statistical QoS guarantees in the enhanced distributed channel access (EDCA) protocol of IEEE 802.11e. In the first part of the dissertation, the new framework to provide QoS support in IEEE 802.11e is presented. The framework uses three independent components, namely, a core MAC layer, a scheduler, and an admission control. The core MAC layer concentrates on the channel access mechanism to improve the overall system efficiency. The scheduler provides service differentiation according to the weights assigned to each Access Category (AC). The admission control provides statistical QoS guarantees. The core MAC layer developed in this dissertation employs a P-Persistent based MAC protocol. A weight-based fair scheduler to obtain throughput service differentiation at each node has been used. In wireless LANs (WLANs), the MAC protocol is the main element that determines the efficiency of sharing the limited communication bandwidth of the wireless channel. In the second part of the dissertation, analytical Markov chain models for the P-Persistent 802.11 MAC protocol under unsaturated load conditions with heterogeneous loads are developed. The Markov models provide closed-form formulas for calculating the packet service time, the packet end-to-end delay, and the channel capacity in the unsaturated load conditions. The accuracy of the models has been validated by extensive NS2 simulation tests and the models are shown to give accurate results. In the final part of the dissertation, the admission control mechanism is developed and evaluated. The analytical model for P-Persistent 802.11 is used to develop a measurement-assisted model-based admission control. The proposed admission control mechanism uses delay as an admission criterion. Both distributed and centralized admission control schemes are developed and the performance results show that both schemes perform very efficiently in providing the QoS guarantees. Since the distributed admission scheme control does not have a complete state information of the WLAN, its performance is generally inferior to the centralized admission control scheme. The detailed performance results using the NS2 simulator have demonstrated the effectiveness of the proposed framework. Compared to 802.11e EDCA, the scheduler consistently achieved the desired throughput differentiation and easy tuning. The core MAC layer achieved better delays in terms of channel access, average packet service time and end-to-end delay. It also achieved higher system throughput than EDCA for any given service differentiation ratio. The admission control provided the desired statistical QoS guarantees

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Quality of Service Provisioning with modified IEEE 802.11 MAC Protocol

    Get PDF
    There has been a phenomenal increase in the demand of quality-of-service (QoS) in wireless networks over the years due to rapid growth in the number of wireless and mobile devices. Such devices are in use to access Internet and QoS aware applications such as video conferencing, voice-over IP, interactive video-on-demand and many other multimedia applications. wireless local area networks (WLANs) confirming to the IEEE 802.11 standard have become extremely popular at an unprecedented rate. As a result, WLAN networks are gaining the momentum and making their way into residential, commercial, industrial and public areas. These trends are more and more accelerated in places like airports, hotels and coffee shop, this typically has many floating end users. The time stringent applications are delay sensitive that require throughput and delay bound creates an urgent need for QoS support in WLANs

    The Mobility Impact in IEEE 802.11p Infrastructureless Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are an extreme case of mobile ad hoc networks (MANETs). High speed and frequent network topology changes are the main characteristics of vehicular networks. These characteristics lead to special issues and challenges in the network design, especially at the medium access control (MAC) layer. Due to high speed of nodes and their frequent disconnections, it is difficult to design a MAC scheme in VANETs that satisfies the quality-of-service requirements in all networking scenarios. In this thesis, we provide a comprehensive evaluation of the mobility impact on the IEEE 802.11p MAC performance. The study evaluates basic performance metrics such as packet delivery ratio, throughput, and delay, as well as the impact of mobility factors. The study also presents a relation between the mobility factors and the respective medium access behavior. Moreover, a new unfairness problem according to node relative speed is identified for both broadcast and unicast scenarios. To achieve better performance, we propose two dynamic contention window mechanisms to alleviate network performance degradation due to high mobility. Extensive simulation results show the significant impact of mobility on the IEEE 802.11p MAC performance, an identification of a new unfairness problem in the vehicle-to-vehicle (V2V) communications, and the effectiveness of the proposed MAC schemes

    Greediness control algorithm for multimedia streaming in wireless local area networks

    Get PDF
    This work investigates the interaction between the application and transport layers while streaming multimedia in a residential Wireless Local Area Network (WLAN). Inconsistencies have been identified that can have a severe impact on the Quality of Experience (QoE) experienced by end users. This problem arises as a result of the streaming processes reliance on rate adaptation engines based on congestion avoidance mechanisms, that try to obtain as much bandwidth as possible from the limited network resources. These upper transport layer mechanisms have no knowledge of the media which they are carrying and as a result treat all traffic equally. This lack of knowledge of the media carried and the characteristics of the target devices results in fair bandwidth distribution at the transport layer but creates unfairness at the application layer. This unfairness mostly affects user perceived quality when streaming high quality multimedia. Essentially, bandwidth that is distributed fairly between competing video streams at the transport layer results in unfair application layer video quality distribution. Therefore, there is a need to allow application layer streaming solutions, tune the aggressiveness of transport layer congestion control mechanisms, in order to create application layer QoE fairness between competing media streams, by taking their device characteristics into account. This thesis proposes the Greediness Control Algorithm (GCA), an upper transport layer mechanism that eliminates quality inconsistencies caused by rate / congestion control mechanisms while streaming multimedia in wireless networks. GCA extends an existing solution (i.e. TCP Friendly Rate Control (TFRC)) by introducing two parameters that allow the streaming application to tune the aggressiveness of the rate estimation and as a result, introduce fair distribution of quality at the application layer. The thesis shows that this rate adaptation technique, combined with a scalable video format allows increased overall system QoE. Extensive simulation analysis demonstrate that this form of rate adaptation increases the overall user QoE achieved via a number of devices operating within the same home WLAN
    corecore