12 research outputs found

    Synaptic rewiring in neuromorphic VLSI for topographic map formation

    Get PDF
    A generalised model of biological topographic map development is presented which combines both weight plasticity and the formation and elimination of synapses (synaptic rewiring) as well as both activity-dependent and -independent processes. The question of whether an activity-dependent process can refine a mapping created by an activity-independent process is investigated using a statistical approach to analysingmapping quality. The model is then implemented in custom mixed-signal VLSI. Novel aspects of this implementation include: (1) a distributed and locally reprogrammable address-event receiver, with which large axonal fan-out does not reduce channel capacity; (2) an analogue current-mode circuit for Euclidean distance calculation which is suitable for operation across multiple chips; (3) slow probabilistic synaptic rewiring driven by (pseudo-)random noise; (4) the application of a very-low-current design technique to improving the stability of weights stored on capacitors; (5) exploiting transistor non-ideality to implement partially weightdependent spike-timing-dependent plasticity; (6) the use of the non-linear capacitance of MOSCAP devices to compensate for other non-linearities. The performance of the chip is characterised and it is shown that the fabricated chips are capable of implementing the model, resulting in biologically relevant behaviours such as activity-dependent reduction of the spatial variance of receptive fields. Complementing a fast synaptic weight change mechanism with a slow synapse rewiring mechanism is suggested as a method of increasing the stability of learned patterns

    Vlsi Implementation of Olfactory Cortex Model

    Get PDF
    This thesis attempts to implement the building blocks required for the realization of the biologically motivated olfactory neural model in silicon as the special purpose hardware. The olfactory model is originally developed by R. Granger, G. Lynch, and Ambros-Ingerson. CMOS analog integrated circuits were used for this purpose. All of the building blocks were fabricated using the MOSIS service and tested at our site. The results of this study can be used to realize a system level integration of the olfactory model.Electrical Engineerin

    A Practical Investigation into Achieving Bio-Plausibility in Evo-Devo Neural Microcircuits Feasible in an FPGA

    Get PDF
    Many researchers has conjectured, argued, or in some cases demonstrated, that bio-plausibility can bring about emergent properties such as adaptability, scalability, fault-tolerance, self-repair, reliability, and autonomy to bio-inspired intelligent systems. Evolutionary-developmental (evo-devo) spiking neural networks are a very bio-plausible mixture of such bio-inspired intelligent systems that have been proposed and studied by a few researchers. However, the general trend is that the complexity and thus the computational cost grow with the bio-plausibility of the system. FPGAs (Field- Programmable Gate Arrays) have been used and proved to be one of the flexible and cost efficient hardware platforms for research' and development of such evo-devo systems. However, mapping a bio-plausible evo-devo spiking neural network to an FPGA is a daunting task full of different constraints and trade-offs that makes it, if not infeasible, very challenging. This thesis explores the challenges, trade-offs, constraints, practical issues, and some possible approaches in achieving bio-plausibility in creating evolutionary developmental spiking neural microcircuits in an FPGA through a practical investigation along with a series of case studies. In this study, the system performance, cost, reliability, scalability, availability, and design and testing time and complexity are defined as measures for feasibility of a system and structural accuracy and consistency with the current knowledge in biology as measures for bio-plausibility. Investigation of the challenges starts with the hardware platform selection and then neuron, cortex, and evo-devo models and integration of these models into a whole bio-inspired intelligent system are examined one by one. For further practical investigation, a new PLAQIF Digital Neuron model, a novel Cortex model, and a new multicellular LGRN evo-devo model are designed, implemented and tested as case studies. Results and their implications for the researchers, designers of such systems, and FPGA manufacturers are discussed and concluded in form of general trends, trade-offs, suggestions, and recommendations

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    On the relationship between neuronal codes and mental models

    Get PDF
    Das ĂŒbergeordnete Ziel meiner Arbeit an dieser Dissertation war ein besseres VerstĂ€ndnis des Zusammenhangs von mentalen Modellen und den zugrundeliegenden Prinzipien, die zur Selbstorganisation neuronaler Verschaltung fĂŒhren. Die Dissertation besteht aus vier individuellen Publikationen, die dieses Ziel aus unterschiedlichen Perspektiven angehen. WĂ€hrend die Selbstorganisation von Sparse-Coding-ReprĂ€sentationen in neuronalem Substrat bereits ausgiebig untersucht worden ist, sind viele Forschungsfragen dazu, wie Sparse-Coding fĂŒr höhere, kognitive Prozesse genutzt werden könnte noch offen. Die ersten zwei Studien, die in Kapitel 2 und Kapitel 3 enthalten sind, behandeln die Frage, inwieweit ReprĂ€sentationen, die mit Sparse-Coding entstehen, mentalen Modellen entsprechen. Wir haben folgende SelektivitĂ€ten in Sparse-Coding-ReprĂ€sentationen identifiziert: mit Stereo-Bildern als Eingangsdaten war die ReprĂ€sentation selektiv fĂŒr die DisparitĂ€ten von Bildstrukturen, welche fĂŒr das AbschĂ€tzen der Entfernung der Strukturen zum Beobachter genutzt werden können. Außerdem war die ReprĂ€sentation selektiv fĂŒr die die vorherrschende Orientierung in Texturen, was fĂŒr das AbschĂ€tzen der Neigung von OberflĂ€chen genutzt werden kann. Mit optischem Fluss von Eigenbewegung als Eingangsdaten war die ReprĂ€sentation selektiv fĂŒr die Richtung der Eigenbewegung in den sechs Freiheitsgraden. Wegen des direkten Zusammenhangs der SelektivitĂ€ten mit physikalischen Eigenschaften können ReprĂ€sentationen, die mit Sparse-Coding entstehen, als frĂŒhe sensorische Modelle der Umgebung dienen. Die kognitiven Prozesse hinter rĂ€umlichem Wissen ruhen auf mentalen Modellen, welche die Umgebung representieren. Wir haben in der dritten Studie, welche in Kapitel 4 enthalten ist, ein topologisches Modell zur Navigation prĂ€sentiert, Es beschreibt einen dualen Populations-Code, bei dem der erste Populations-Code Orte anhand von Orts-Feldern (Place-Fields) kodiert und der zweite Populations-Code Bewegungs-Instruktionen, basierend auf der VerknĂŒpfung von Orts-Feldern, kodiert. Der Fokus lag nicht auf der Implementation in biologischem Substrat oder auf einer exakten Modellierung physiologischer Ergebnisse. Das Modell ist eine biologisch plausible, einfache Methode zur Navigation, welche sich an einen Zwischenschritt emergenter Navigations-FĂ€higkeiten in einer evolutiven Navigations-Hierarchie annĂ€hert. Unser automatisierter Test der Sehleistungen von MĂ€usen, welcher in Kapitel 5 beschrieben wird, ist ein Beispiel von Verhaltens-Tests im Wahrnehmungs-Handlungs-Zyklus (Perception-Action-Cycle). Das Ziel dieser Studie war die Quantifizierung des optokinetischen Reflexes. Wegen des reichhaltigen Verhaltensrepertoires von MĂ€usen sind fĂŒr die Quantifizierung viele umfangreiche Analyseschritte erforderlich. Tiere und Menschen sind verkörperte (embodied) lebende Systeme und daher aus stark miteinander verwobenen Modulen oder EntitĂ€ten zusammengesetzt, welche außerdem auch mit der Umgebung verwoben sind. Um lebende Systeme als Ganzes zu studieren ist es notwendig Hypothesen, zum Beispiel zur Natur mentaler Modelle, im Wahrnehmungs-Handlungs-Zyklus zu testen. Zusammengefasst erweitern die Studien dieser Dissertation unser VerstĂ€ndnis des Charakters frĂŒher sensorischer ReprĂ€sentationen als mentale Modelle, sowie unser VerstĂ€ndnis höherer, mentalen Modellen fĂŒr die rĂ€umliche Navigation. DarĂŒber hinaus enthĂ€lt es ein Beispiel fĂŒr das Evaluieren von Hypothesn im Wahr\-neh\-mungs-Handlungs-Zyklus.The superordinate aim of my work towards this thesis was a better understanding of the relationship between mental models and the underlying principles that lead to the self-organization of neuronal circuitry. The thesis consists of four individual publications, which approach this goal from differing perspectives. While the formation of sparse coding representations in neuronal substrate has been investigated extensively, many research questions on how sparse coding may be exploited for higher cognitive processing are still open. The first two studies, included as chapter 2 and chapter 3, asked to what extend representations obtained with sparse coding match mental models. We identified the following selectivities in sparse coding representations: with stereo images as input, the representation was selective for the disparity of image structures, which can be used to infer the distance of structures to the observer. Furthermore, it was selective to the predominant orientation in textures, which can be used to infer the orientation of surfaces. With optic flow from egomotion as input, the representation was selective to the direction of egomotion in 6 degrees of freedom. Due to the direct relation between selectivity and physical properties, these representations, obtained with sparse coding, can serve as early sensory models of the environment. The cognitive processes behind spatial knowledge rest on mental models that represent the environment. We presented a topological model for wayfinding in the third study, included as chapter 4. It describes a dual population code, where the first population code encodes places by means of place fields, and the second population code encodes motion instructions based on links between place fields. We did not focus on an implementation in biological substrate or on an exact fit to physiological findings. The model is a biologically plausible, parsimonious method for wayfinding, which may be close to an intermediate step of emergent skills in an evolutionary navigational hierarchy. Our automated testing for visual performance in mice, included in chapter 5, is an example of behavioral testing in the perception-action cycle. The goal of this study was to quantify the optokinetic reflex. Due to the rich behavioral repertoire of mice, quantification required many elaborate steps of computational analyses. Animals and humans are embodied living systems, and therefore composed of strongly enmeshed modules or entities, which are also enmeshed with the environment. In order to study living systems as a whole, it is necessary to test hypothesis, for example on the nature of mental models, in the perception-action cycle. In summary, the studies included in this thesis extend our view on the character of early sensory representations as mental models, as well as on high-level mental models for spatial navigation. Additionally it contains an example for the evaluation of hypotheses in the perception-action cycle

    Spatiotemporal properties of evoked neural response in the primary visual cortex

    Get PDF
    Understanding how neurons in the primary visual cortex (V1) of primates respond to visual patterns has been a major focus of research in neuroscience for many decades. Numerous different experimental techniques have been used to provide data about how the spatiotemporal patterns of light projected from the visual environment onto the retina relate to the spatiotemporal patterns of neural activity evoked in the visual cortex, across disparate spatial and temporal scales. However, despite the variety of data sources available (or perhaps because of it), there is still no unified explanation for how the circuitry in the eye, the subcortical visual pathways, and the visual cortex responds to these patterns. This thesis outlines a research project to build computational models of V1 that incorporate observations and constraints from an unprecedented range of experimental data sources, reconciling each data source with the others into a consistent proposal for the underlying circuitry and computational mechanisms. The final mechanistic model is the first one shown to be compatible with measurements of: (1) temporal firing-rate patterns in single neurons over tens of milliseconds obtained using single-unit electrophysiology, (2) spatiotemporal patterns in membrane voltages in cortical tissues spanning several square millimeters over similar time scales, obtained using voltage-sensitive–dye imaging, and (3) spatial patterns in neural activity over several square millimeters of cortex, measured over the course of weeks of early development using optical imaging of intrinsic signals. Reconciling this data was not trivial, in part because single-unit studies suggested short, transient neural responses, while population measurements suggested gradual, sustained responses. The fundamental principles of the resulting models are (a) that the spatial and temporal patterns of neural responses are determined not only by the particular properties of a visual stimulus and the internal response properties of individual neurons, but by the collective dynamics of an entire network of interconnected neurons, (b) that these dynamics account both for the fast time course of neural responses to individual stimuli, and the gradual emergence of structure in this network via activity-dependent Hebbian modifications of synaptic connections over days, and (c) the differences between single-unit and population measurements are primarily due to extensive and wide-ranging forms of diversity in neural responses, which become crucial when trying to estimate population responses out of a series of individual measurements. The final model is the first to include all the types of diversity necessary to show how realistic single-unit responses can add up to the very different population-level evoked responses measured using voltage-sensitive–dye imaging over large cortical areas. Additional contributions from this thesis include (1) a comprehensive solution for doing exploratory yet reproducible computational research, implemented as a set of open-source tools, (2) a general-purpose metric for evaluating the biological realism of model orientation maps, and (3) a demonstration that the previous developmental model that formed the basis of the models in this thesis is the only developmental model so far that produces realistic orientation maps. These analytical results, computational models, and research tools together provide a systematic approach for understanding neural responses to visual stimuli across time scales from milliseconds to weeks and spatial scales from microns to centimeters
    corecore