34,748 research outputs found

    Denoising source separation

    Get PDF
    A new algorithmic framework called denoising source separation (DSS) is introduced. The main benefit of this framework is that it allows for easy development of new source separation algorithms which are optimised for specific problems. In this framework, source separation algorithms are constucted around denoising procedures. The resulting algorithms can range from almost blind to highly specialised source separation algorithms. Both simple linear and more complex nonlinear or adaptive denoising schemes are considered. Some existing independent component analysis algorithms are reinterpreted within DSS framework and new, robust blind source separation algorithms are suggested. Although DSS algorithms need not be explicitly based on objective functions, there is often an implicit objective function that is optimised. The exact relation between the denoising procedure and the objective function is derived and a useful approximation of the objective function is presented. In the experimental section, various DSS schemes are applied extensively to artificial data, to real magnetoencephalograms and to simulated CDMA mobile network signals. Finally, various extensions to the proposed DSS algorithms are considered. These include nonlinear observation mappings, hierarchical models and overcomplete, nonorthogonal feature spaces. With these extensions, DSS appears to have relevance to many existing models of neural information processing

    Blind source separation using temporal predictability

    Get PDF
    A measure of temporal predictability is defined and used to separate linear mixtures of signals. Given any set of statistically independent source signals, it is conjectured here that a linear mixture of those signals has the following property: the temporal predictability of any signal mixture is less than (or equal to) that of any of its component source signals. It is shown that this property can be used to recover source signals from a set of linear mixtures of those signals by finding an un-mixing matrix that maximizes a measure of temporal predictability for each recovered signal. This matrix is obtained as the solution to a generalized eigenvalue problem; such problems have scaling characteristics of O (N3), where N is the number of signal mixtures. In contrast to independent component analysis, the temporal predictability method requires minimal assumptions regarding the probability density functions of source signals. It is demonstrated that the method can separate signal mixtures in which each mixture is a linear combination of source signals with supergaussian, sub-gaussian, and gaussian probability density functions and on mixtures of voices and music

    An adaptive stereo basis method for convolutive blind audio source separation

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in PUBLICATION, [71, 10-12, June 2008] DOI:neucom.2007.08.02

    MISEP - Linear and Nonlinear ICA Based on Mutual Information

    Get PDF
    MISEP is a method for linear and nonlinear ICA, that is able to handle a large variety of situations. It is an extension of the well known INFOMAX method, in two directions: (1) handling of nonlinear mixtures, and (2) learning the nonlinearities to be used at the outputs. The method can therefore separate linear and nonlinear mixtures of components with a wide range of statistical distributions. This paper presents the basis of the MISEP method, as well as experimental results obtained with it. The results illustrate the applicability of the method to various situations, and show that, although the nonlinear blind separation problem is ill-posed, use of regularization allows the problem to be solved when the nonlinear mixture is relatively smooth

    Independent component approach to the analysis of EEG and MEG recordings

    Get PDF
    Multichannel recordings of the electromagnetic fields emerging from neural currents in the brain generate large amounts of data. Suitable feature extraction methods are, therefore, useful to facilitate the representation and interpretation of the data. Recently developed independent component analysis (ICA) has been shown to be an efficient tool for artifact identification and extraction from electroencephalographic (EEG) and magnetoen- cephalographic (MEG) recordings. In addition, ICA has been ap- plied to the analysis of brain signals evoked by sensory stimuli. This paper reviews our recent results in this field
    • …
    corecore