5,894 research outputs found

    Model-Based Iterative Learning Control Applied to an Industrial Robot with Elasticity

    Get PDF
    In this paper model-based Iterative Learning Control (ILC) is applied to improve the tracking accuracy of an industrial robot with elasticity. The ILC algorithm iteratively updates the reference trajectory for the robot such that the predicted tracking error in the next iteration is minimised. The tracking error is predicted by a model of the closed-loop dynamics of the robot. The model includes the servo resonance frequency, the first resonance frequency caused by elasticity in the mechanism and the variation of both frequencies along the trajectory. Experimental results show that the tracking error of the robot can be reduced, even at frequencies beyond the first elastic resonance frequency

    Multi-Task Generative Adversarial Nets with Shared Memory for Cross-Domain Coordination Control

    Full text link
    Generating sequential decision process from huge amounts of measured process data is a future research direction for collaborative factory automation, making full use of those online or offline process data to directly design flexible make decisions policy, and evaluate performance. The key challenges for the sequential decision process is to online generate sequential decision-making policy directly, and transferring knowledge across tasks domain. Most multi-task policy generating algorithms often suffer from insufficient generating cross-task sharing structure at discrete-time nonlinear systems with applications. This paper proposes the multi-task generative adversarial nets with shared memory for cross-domain coordination control, which can generate sequential decision policy directly from raw sensory input of all of tasks, and online evaluate performance of system actions in discrete-time nonlinear systems. Experiments have been undertaken using a professional flexible manufacturing testbed deployed within a smart factory of Weichai Power in China. Results on three groups of discrete-time nonlinear control tasks show that our proposed model can availably improve the performance of task with the help of other related tasks

    A constrained control-planning strategy for redundant manipulators

    Full text link
    This paper presents an interconnected control-planning strategy for redundant manipulators, subject to system and environmental constraints. The method incorporates low-level control characteristics and high-level planning components into a robust strategy for manipulators acting in complex environments, subject to joint limits. This strategy is formulated using an adaptive control rule, the estimated dynamic model of the robotic system and the nullspace of the linearized constraints. A path is generated that takes into account the capabilities of the platform. The proposed method is computationally efficient, enabling its implementation on a real multi-body robotic system. Through experimental results with a 7 DOF manipulator, we demonstrate the performance of the method in real-world scenarios

    Iterative Machine Learning for Precision Trajectory Tracking with Series Elastic Actuators

    Full text link
    When robots operate in unknown environments small errors in postions can lead to large variations in the contact forces, especially with typical high-impedance designs. This can potentially damage the surroundings and/or the robot. Series elastic actuators (SEAs) are a popular way to reduce the output impedance of a robotic arm to improve control authority over the force exerted on the environment. However this increased control over forces with lower impedance comes at the cost of lower positioning precision and bandwidth. This article examines the use of an iteratively-learned feedforward command to improve position tracking when using SEAs. Over each iteration, the output responses of the system to the quantized inputs are used to estimate a linearized local system models. These estimated models are obtained using a complex-valued Gaussian Process Regression (cGPR) technique and then, used to generate a new feedforward input command based on the previous iteration's error. This article illustrates this iterative machine learning (IML) technique for a two degree of freedom (2-DOF) robotic arm, and demonstrates successful convergence of the IML approach to reduce the tracking error.Comment: 9 pages, 16 figure. Submitted to AMC Worksho

    Special issue on smart interactions in cyber-physical systems: Humans, agents, robots, machines, and sensors

    Get PDF
    In recent years, there has been increasing interaction between humans and non‐human systems as we move further beyond the industrial age, the information age, and as we move into the fourth‐generation society. The ability to distinguish between human and non‐human capabilities has become more difficult to discern. Given this, it is common that cyber‐physical systems (CPSs) are rapidly integrated with human functionality, and humans have become increasingly dependent on CPSs to perform their daily routines.The constant indicators of a future where human and non‐human CPSs relationships consistently interact and where they allow each other to navigate through a set of non‐trivial goals is an interesting and rich area of research, discovery, and practical work area. The evidence of con- vergence has rapidly gained clarity, demonstrating that we can use complex combinations of sensors, artificial intelli- gence, and data to augment human life and knowledge. To expand the knowledge in this area, we should explain how to model, design, validate, implement, and experiment with these complex systems of interaction, communication, and networking, which will be developed and explored in this special issue. This special issue will include ideas of the future that are relevant for understanding, discerning, and developing the relationship between humans and non‐ human CPSs as well as the practical nature of systems that facilitate the integration between humans, agents, robots, machines, and sensors (HARMS).Fil: Kim, Donghan. Kyung Hee University;Fil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Matson, Eric T.. Purdue University; Estados UnidosFil: Kim, Gerard Jounghyun. Korea University

    Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning

    Full text link
    Although reinforcement learning methods can achieve impressive results in simulation, the real world presents two major challenges: generating samples is exceedingly expensive, and unexpected perturbations or unseen situations cause proficient but specialized policies to fail at test time. Given that it is impractical to train separate policies to accommodate all situations the agent may see in the real world, this work proposes to learn how to quickly and effectively adapt online to new tasks. To enable sample-efficient learning, we consider learning online adaptation in the context of model-based reinforcement learning. Our approach uses meta-learning to train a dynamics model prior such that, when combined with recent data, this prior can be rapidly adapted to the local context. Our experiments demonstrate online adaptation for continuous control tasks on both simulated and real-world agents. We first show simulated agents adapting their behavior online to novel terrains, crippled body parts, and highly-dynamic environments. We also illustrate the importance of incorporating online adaptation into autonomous agents that operate in the real world by applying our method to a real dynamic legged millirobot. We demonstrate the agent's learned ability to quickly adapt online to a missing leg, adjust to novel terrains and slopes, account for miscalibration or errors in pose estimation, and compensate for pulling payloads.Comment: First 2 authors contributed equally. Website: https://sites.google.com/berkeley.edu/metaadaptivecontro

    Trajectory-Optimized Sensing for Active Search of Tissue Abnormalities in Robotic Surgery

    Full text link
    In this work, we develop an approach for guiding robots to automatically localize and find the shapes of tumors and other stiff inclusions present in the anatomy. Our approach uses Gaussian processes to model the stiffness distribution and active learning to direct the palpation path of the robot. The palpation paths are chosen such that they maximize an acquisition function provided by an active learning algorithm. Our approach provides the flexibility to avoid obstacles in the robot's path, incorporate uncertainties in robot position and sensor measurements, include prior information about location of stiff inclusions while respecting the robot-kinematics. To the best of our knowledge this is the first work in literature that considers all the above conditions while localizing tumors. The proposed framework is evaluated via simulation and experimentation on three different robot platforms: 6-DoF industrial arm, da Vinci Research Kit (dVRK), and the Insertable Robotic Effector Platform (IREP). Results show that our approach can accurately estimate the locations and boundaries of the stiff inclusions while reducing exploration time.Comment: 8 pages, ICRA 201

    Data Management in Industry 4.0: State of the Art and Open Challenges

    Full text link
    Information and communication technologies are permeating all aspects of industrial and manufacturing systems, expediting the generation of large volumes of industrial data. This article surveys the recent literature on data management as it applies to networked industrial environments and identifies several open research challenges for the future. As a first step, we extract important data properties (volume, variety, traffic, criticality) and identify the corresponding data enabling technologies of diverse fundamental industrial use cases, based on practical applications. Secondly, we provide a detailed outline of recent industrial architectural designs with respect to their data management philosophy (data presence, data coordination, data computation) and the extent of their distributiveness. Then, we conduct a holistic survey of the recent literature from which we derive a taxonomy of the latest advances on industrial data enabling technologies and data centric services, spanning all the way from the field level deep in the physical deployments, up to the cloud and applications level. Finally, motivated by the rich conclusions of this critical analysis, we identify interesting open challenges for future research. The concepts presented in this article thematically cover the largest part of the industrial automation pyramid layers. Our approach is multidisciplinary, as the selected publications were drawn from two fields; the communications, networking and computation field as well as the industrial, manufacturing and automation field. The article can help the readers to deeply understand how data management is currently applied in networked industrial environments, and select interesting open research opportunities to pursue

    Iterative Learning Control with Application to Robotics

    Get PDF
    Many machines and robots working today in factories are programmed to perform the same task repeatedly. By observing the tracking error in each iteration of the same task it becomes clear that it is actually repetitive, even though disturbances from noise and possibly sligthly changing friction dynamics affect the response. The idea of Iterative learning Control D ILC E is to use the knowledge from the previous iterations of the same task to reduce the tracking error the next time the task is performed. ILC utilizes the tracking error knowledge from the previous iteration to change the input signal to the system. In the thesis ILC is applied to an ABB Irb-2000 industrial robot. Using ILC the tracking error on the motor side has been reduced without changing the internal structure or any parameter in the robot controller. Three different ILC algorithms are considered in the thesis. Also some important theorems about ILC stability are taken into account. Two of these three ILC algorithms have been applied to the robot to improve the tracking of desired trajectories. ILC has also been used in order to improve the robot motion of an open container with liquid. The purpose was to shorten the motion time of the package transfer with control of the slosh inside
    corecore