14,844 research outputs found

    General highlight detection in sport videos

    Get PDF
    Attention is a psychological measurement of human reflection against stimulus. We propose a general framework of highlight detection by comparing attention intensity during the watching of sports videos. Three steps are involved: adaptive selection on salient features, unified attention estimation and highlight identification. Adaptive selection computes feature correlation to decide an optimal set of salient features. Unified estimation combines these features by the technique of multi-resolution autoregressive (MAR) and thus creates a temporal curve of attention intensity. We rank the intensity of attention to discriminate boundaries of highlights. Such a framework alleviates semantic uncertainty around sport highlights and leads to an efficient and effective highlight detection. The advantages are as follows: (1) the capability of using data at coarse temporal resolutions; (2) the robustness against noise caused by modality asynchronism, perception uncertainty and feature mismatch; (3) the employment of Markovian constrains on content presentation, and (4) multi-resolution estimation on attention intensity, which enables the precise allocation of event boundaries

    ROAM: a Rich Object Appearance Model with Application to Rotoscoping

    Get PDF
    Rotoscoping, the detailed delineation of scene elements through a video shot, is a painstaking task of tremendous importance in professional post-production pipelines. While pixel-wise segmentation techniques can help for this task, professional rotoscoping tools rely on parametric curves that offer the artists a much better interactive control on the definition, editing and manipulation of the segments of interest. Sticking to this prevalent rotoscoping paradigm, we propose a novel framework to capture and track the visual aspect of an arbitrary object in a scene, given a first closed outline of this object. This model combines a collection of local foreground/background appearance models spread along the outline, a global appearance model of the enclosed object and a set of distinctive foreground landmarks. The structure of this rich appearance model allows simple initialization, efficient iterative optimization with exact minimization at each step, and on-line adaptation in videos. We demonstrate qualitatively and quantitatively the merit of this framework through comparisons with tools based on either dynamic segmentation with a closed curve or pixel-wise binary labelling

    Better Foreground Segmentation Through Graph Cuts

    Get PDF
    For many tracking and surveillance applications, background subtraction provides an effective means of segmenting objects moving in front of a static background. Researchers have traditionally used combinations of morphological operations to remove the noise inherent in the background-subtracted result. Such techniques can effectively isolate foreground objects, but tend to lose fidelity around the borders of the segmentation, especially for noisy input. This paper explores the use of a minimum graph cut algorithm to segment the foreground, resulting in qualitatively and quantitiatively cleaner segmentations. Experiments on both artificial and real data show that the graph-based method reduces the error around segmented foreground objects. A MATLAB code implementation is available at http://www.cs.smith.edu/~nhowe/research/code/#fgsegComment: 8 pages, 110 figures. Revision: Added web link to downloadable Matlab implementatio
    • …
    corecore