2,619 research outputs found

    Efficient Energy Management in Cloud Data center using VM Consolidation

    Get PDF
    Cloud computing is a model which can fast provisioned and released the computing resources by using minimum number of management effort. This can be done by the user without doing any communication with the cloud service providers. Cloud provide the computing resources, on-demand network access which is pooled together and it can be provisioned dynamically according to the user needs. Due to the large application, more number of computing nodes are required. A large amount of electrical energy is consumed due to the establishment of the data center. There is a problem of carbon dioxide emissions and increasing cost of operation due to the formation of large data center. A consolidation of virtual machines technique is proposed in our thesis to reduce the energy consumption and to maximize the utilization of the computing resources in the data center. Several virtual machines are taken together into a single physical machine in the consolidation technique and it helps to decrease the consumption of energy by putting idle server into inactive mode. A number of active hosts is minimized by continuously reallocating VMs using live migration. In each migration, Service Level Agreement(SLA) violations may occur, hence it is required to reduce the number of migrations.In order to satisfy quality of services in cloud computing environment, our proposed techniques mainly performs the following functions:(i)reducing the consumption of energy, (ii) minimize the number of migrations and (iii) minimize the percentage of SLA violations. Initially we detect whether any host is overloaded or not. The Overloaded host is detected by considering CPU utilization as a threshold Value. If an overloaded host is detected then some virtual machines are migrated from it by using VM selection policy. After selection of the VMs, the next step is to place the new VMs. For VM placement, the greedy algorithms such as Best Fit Decreasing(BFD) and Modified First Fit Decreasing(MFFD) are used in this thesis. The proposed techniques are compared with the existing EEDVM and PALVM techniques. Using proposed AUTREC technique there is 8% improved in energy consumption, 3% in number of migrations, 10% in SLA violation and 12% in host shutdown as compared to EEDVM technique. Using proposed DUTREC technique there is 9% improved in energy consumption, 6% in number of migrations, 20% in SLA violation and 13% in host shutdown as compared to PALVM technique

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Energy-aware virtual machine consolidation for cloud data centers

    Get PDF
    One of the issues in virtual machine consolidation (VMC) in cloud data centers is categorizing different workloads to classify the state of physical servers. In this paper, we propose a new scheme of host's load categorization in energy-performance VMC framework to reduce energy consumption while meeting the quality of service (QoS) requirement. Specifically the under loaded hosts are classified into three further states, i.e., Under loaded, normal and critical by applying the under load detection algorithm. We also design overload detection and virtual machine (VM) selection policies. The simulation results show that the proposed policies outperform the existing policies in Cloud Sim in terms of both energy and service level agreements violation (SLAV) reduction

    Utility-based Allocation of Resources to Virtual Machines in Cloud Computing

    Get PDF
    In recent years, cloud computing has gained a wide spread use as a new computing model that offers elastic resources on demand, in a pay-as-you-go fashion. One important goal of a cloud provider is dynamic allocation of Virtual Machines (VMs) according to workload changes in order to keep application performance to Service Level Agreement (SLA) levels, while reducing resource costs. The problem is to find an adequate trade-off between the two conflicting objectives of application performance and resource costs. In this dissertation, resource allocation solutions for this trade-off are proposed by expressing application performance and resource costs in a utility function. The proposed solutions allocate VM resources at the global data center level and at the local physical machine level by optimizing the utility function. The utility function, given as the difference between performance and costs, represents the profit of the cloud provider and offers the possibility to capture in a flexible and natural way the performance-cost trade-off. For global level resource allocation, a two-tier resource management solution is developed. In the first tier, local node controllers are located that dynamically allocate resource shares to VMs, so to maximize a local node utility function. In the second tier, there is a global controller that makes VM live migration decisions in order to maximize a global utility function. Experimental results show that optimizing the global utility function by changing the number of physical nodes according to workload maintains the performance at acceptable levels while reducing costs. To allocate multiple resources at the local physical machine level, a solution based on feed-back control theory and utility function optimization is proposed. This dynamically allocates shares to multiple resources of VMs such as CPU, memory, disk and network I/O bandwidth. In addressing the complex non-linearities that exist in shared virtualized infrastructures between VM performance and resource allocations, a solution is proposed that allocates VM resources to optimize a utility function based on application performance and power modelling. An Artificial Neural Network (ANN) is used to build an on- line model of the relationships between VM resource allocations and application performance, and another one between VM resource allocations and physical machine power. To cope with large utility optimization times in the case of an increased number of VMs, a distributed resource manager is proposed. It consists of several ANNs, each responsible for modelling and resource allocation of one VM, while exchanging information with other ANNs for coordinating resource allocations. Experiments, in simulated and realistic environments, show that the distributed ANN resource manager achieves better performance-power trade-offs than a centralized version and a distributed non-coordinated resource manager. To deal with the difficulty of building an accurate online application model and long model adaptation time, a solution that offers model-free resource management based on fuzzy control is proposed. It optimizes a utility function based on a hill-climbing search heuristic implemented as fuzzy rules. To cope with long utility optimization time in the case of an increased number of VMs, a multi-agent fuzzy controller is developed where each agent, in parallel with others, optimizes its own local utility function. The fuzzy control approach eliminates the need to build a model beforehand and provides a robust solution even for noisy measurements. Experimental results show that the multi-agent fuzzy controller performs better in terms of utility value than a centralized fuzzy control version and a state-of-the-art adaptive optimal control approach, especially for an increased number of VMs. Finally, to address some of the problems of reactive VM resource allocation approaches, a proactive resource allocation solution is proposed. This approach decides on VM resource allocations based on resource demand prediction, using a machine learning technique called Support Vector Machine (SVM). To deal with interdependencies between VMs of the same multi-tier application, cross- correlation demand prediction of multiple resource usage time series of all VMs of the multi-tier application is applied. As experiments show, this results in improved prediction accuracy and application performance

    Cloud Servers: Resource Optimization Using Different Energy Saving Techniques

    Get PDF
    Currently, researchers are working to contribute to the emerging fields of cloud computing, edge computing, and distributed systems. The major area of interest is to examine and understand their performance. The major globally leading companies, such as Google, Amazon, ONLIVE, Giaki, and eBay, are truly concerned about the impact of energy consumption. These cloud computing companies use huge data centers, consisting of virtual computers that are positioned worldwide and necessitate exceptionally high-power costs to preserve. The increased requirement for energy consumption in IT firms has posed many challenges for cloud computing companies pertinent to power expenses. Energy utilization is reliant upon numerous aspects, for example, the service level agreement, techniques for choosing the virtual machine, the applied optimization strategies and policies, and kinds of workload. The present paper tries to provide an answer to challenges related to energy-saving through the assistance of both dynamic voltage and frequency scaling techniques for gaming data centers. Also, to evaluate both the dynamic voltage and frequency scaling techniques compared to non-power-aware and static threshold detection techniques. The findings will facilitate service suppliers in how to encounter the quality of service and experience limitations by fulfilling the service level agreements. For this purpose, the CloudSim platform is applied for the application of a situation in which game traces are employed as a workload for analyzing the procedure. The findings evidenced that an assortment of good quality techniques can benefit gaming servers to conserve energy expenditures and sustain the best quality of service for consumers located universally. The originality of this research presents a prospect to examine which procedure performs good (for example, dynamic, static, or non-power aware). The findings validate that less energy is utilized by applying a dynamic voltage and frequency method along with fewer service level agreement violations, and better quality of service and experience, in contrast with static threshold consolidation or non-power aware technique

    A Review On Green Cloud Computing

    Get PDF
    The objective of green computing is to reap monetary growth and enhance the way the computing devices are used. In large data centers computational offloading is main problem due to increased demand for timely and response for real time application which lead to high energy consumption by data centers, so the aim of green computing is to find energy efficient solution which monopolize optimal utilization of the available resources. Green IT methods comprises of environmentally viable management, energy efficient computers and enhanced recycling procedures. By using different algorithm and energy efficient scheduling power consumption of virtual machine can be minimize, this paper provide an overview of different algorithms and techniques which are used to move towards the green computing

    Energy-Aware Adaptive Four Thresholds Technique for Optimal Virtual Machine Placement

    Get PDF
    With the increasing expansion of cloud data centers and the demand for cloud services, one of the major problems facing these data centers is the “increasing growth in energy consumption ". In this paper, we propose a method to balance the burden of virtual machine resources in order to reduce energy consumption. The proposed technique is based on a four-adaptive threshold model to reduce energy consumption in physical servers and minimize SLA violation in cloud data centers. Based on the proposed technique, hosts will be grouped into five clusters: hosts with low load, hosts with a light load, hosts with a middle load, hosts with high load and finally, hosts with a heavy load. Virtual machines are transferred from the host with high load and heavy load to the hosts with light load. Also, the VMs on low hosts will be migrated to the hosts with middle load, while the host with a light load and hosts with middle load remain unchanged. The values of the thresholds are obtained on the basis of the mathematical modeling approach and the -Means Clustering Algorithm is used for clustering of hosts. Experimental results show that applying the proposed technique will improve the load balancing and reduce the number of VM migration and reduce energy consumption
    corecore