80 research outputs found

    Finding Structural Information of RF Power Amplifiers using an Orthogonal Non-Parametric Kernel Smoothing Estimator

    Full text link
    A non-parametric technique for modeling the behavior of power amplifiers is presented. The proposed technique relies on the principles of density estimation using the kernel method and is suited for use in power amplifier modeling. The proposed methodology transforms the input domain into an orthogonal memory domain. In this domain, non-parametric static functions are discovered using the kernel estimator. These orthogonal, non-parametric functions can be fitted with any desired mathematical structure, thus facilitating its implementation. Furthermore, due to the orthogonality, the non-parametric functions can be analyzed and discarded individually, which simplifies pruning basis functions and provides a tradeoff between complexity and performance. The results show that the methodology can be employed to model power amplifiers, therein yielding error performance similar to state-of-the-art parametric models. Furthermore, a parameter-efficient model structure with 6 coefficients was derived for a Doherty power amplifier, therein significantly reducing the deployment's computational complexity. Finally, the methodology can also be well exploited in digital linearization techniques.Comment: Matlab sample code (15 MB): https://dl.dropboxusercontent.com/u/106958743/SampleMatlabKernel.zi

    Augmented-LSTM and 1D-CNN-LSTM based DPD models for linearization of wideband power amplifiers

    Get PDF
    Abstract. Artificial Neural Networks (ANNs) have gained popularity in modeling the nonlinear behavior of wideband power amplifiers. Recently, modern researchers have used two types of neural network architectures, Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), to model power amplifier behavior and compensate for power amplifier distortion. Each architecture has its own advantages and limitations. In light of these, this study proposes two digital pre-distortion (DPD) models based on LSTM and CNN. The first proposed model is an augmented LSTM model, which effectively reduces distortion in wideband power amplifiers. The measurement results demonstrate that the proposed augmented LSTM model provides better linearization performance than existing state-of-the-art DPDs designed using ANNs. The second proposed model is a 1D-CNN-LSTM model that simplifies the augmented LSTM model by integrating a CNN layer before the LSTM layer. This integration reduces the number of input features to the LSTM layer, resulting in a low-complexity linearization for wideband PAs. The measurement results show that the 1D-CNN-LSTM model provides comparable results to the augmented LSTM model. In summary, this study proposes two novel DPD models based on LSTM and CNN, which effectively reduce distortion and provide low-complexity linearization for wideband PAs. The measurement results demonstrate that both models offer comparable performance to existing state-of-the-art DPDs designed using ANNs

    Power Amplifiers Linearization Based On Complex Gain Memory Predistortion

    Get PDF
    Power Amplifiers (PAs) are important components in communication systems and are nonlinear. The nonlinearity creates out of band distortion beyond the signal bandwidth, which interferes with adjacent channels. It also causes distortions within the signal bandwidth, which decreases the bit error rate at the receiver. Digital predistortion is one of the most cost effective ways among all linearization techniques to compensate for these nonlinearities. In this thesis a novel technique for compensating memory effects and out of band distortions is proposed and is called Complex Gain Memory Predistortion (CGMP). The main advantage of the CGMP technique as compared to the memory polynomial technique is the ability of this technique to compensate all the memory effects inside the PA. Two structures of the CGMP technique are proposed. The CGMP technique is examined using two approaches, simulation and experiment. Power amplifiers are modeled with memory polynomial technique to examine the effects of the memory that causes increment in Adjacent Channel Leakage Ratio (ACLR). To implement this method, the complex divider is required. This complex divider is then designed and implemented in Field Programmable Gate Array (FPGA) and combined with other parts to make the predistortion block. The CGMP is implemented in Virtex 5 FPGA and simulated using Xilinx blocks in Matlab. In the experimental approach the CGMP is examined with the actual power amplifier ZVE-8G from Mini Circuit. Finally the CGMP technique is compared with memory polynomial method and validated using a 1.9 GHz 60W LDMOS power amplifier that is designed in simulation and various signals such as 2-carrier WCDMA with 10 MHz carrier spacing and Mobile WiMAX with 10 MHz bandwidth. The simulations results showed between 25 to 30 dB improvement in ACLR and almost 5 dB improvement as compared to the memory polynomial method. The experimental results also show around 10 dB reduction in ACLR with applying QPSK signal with 1 MHz bandwidth. The improvement of 7 percent in Power Added Efficiency (PAE) is also achieved

    ワイヤレス通信のための先進的な信号処理技術を用いた非線形補償法の研究

    Get PDF
    The inherit nonlinearity in analogue front-ends of transmitters and receivers have had primary impact on the overall performance of the wireless communication systems, as it gives arise of substantial distortion when transmitting and processing signals with such circuits. Therefore, the nonlinear compensation (linearization) techniques become essential to suppress the distortion to an acceptable extent in order to ensure sufficient low bit error rate. Furthermore, the increasing demands on higher data rate and ubiquitous interoperability between various multi-coverage protocols are two of the most important features of the contemporary communication system. The former demand pushes the communication system to use wider bandwidth and the latter one brings up severe coexistence problems. Having fully considered the problems raised above, the work in this Ph.D. thesis carries out extensive researches on the nonlinear compensations utilizing advanced digital signal processing techniques. The motivation behind this is to push more processing tasks to the digital domain, as it can potentially cut down the bill of materials (BOM) costs paid for the off-chip devices and reduce practical implementation difficulties. The work here is carried out using three approaches: numerical analysis & computer simulations; experimental tests using commercial instruments; actual implementation with FPGA. The primary contributions for this thesis are summarized as the following three points: 1) An adaptive digital predistortion (DPD) with fast convergence rate and low complexity for multi-carrier GSM system is presented. Albeit a legacy system, the GSM, however, has a very strict requirement on the out-of-band emission, thus it represents a much more difficult hurdle for DPD application. It is successfully implemented in an FPGA without using any other auxiliary processor. A simplified multiplier-free NLMS algorithm, especially suitable for FPGA implementation, for fast adapting the LUT is proposed. Many design methodologies and practical implementation issues are discussed in details. Experimental results have shown that the DPD performed robustly when it is involved in the multichannel transmitter. 2) The next generation system (5G) will unquestionably use wider bandwidth to support higher throughput, which poses stringent needs for using high-speed data converters. Herein the analog-to-digital converter (ADC) tends to be the most expensive single device in the whole transmitter/receiver systems. Therefore, conventional DPD utilizing high-speed ADC becomes unaffordable, especially for small base stations (micro, pico and femto). A digital predistortion technique utilizing spectral extrapolation is proposed in this thesis, wherein with band-limited feedback signal, the requirement on ADC speed can be significantly released. Experimental results have validated the feasibility of the proposed technique for coping with band-limited feedback signal. It has been shown that adequate linearization performance can be achieved even if the acquisition bandwidth is less than the original signal bandwidth. The experimental results obtained by using LTE-Advanced signal of 320 MHz bandwidth are quite satisfactory, and to the authors’ knowledge, this is the first high-performance wideband DPD ever been reported. 3) To address the predicament that mobile operators do not have enough contiguous usable bandwidth, carrier aggregation (CA) technique is developed and imported into 4G LTE-Advanced. This pushes the utilization of concurrent dual-band transmitter/receiver, which reduces the hardware expense by using a single front-end. Compensation techniques for the respective concurrent dual-band transmitter and receiver front-ends are proposed to combat the inter-band modulation distortion, and simultaneously reduce the distortion for the both lower-side band and upper-side band signals.電気通信大学201

    Neural Network DPD for Aggrandizing SM-VCSEL-SSMF-Based Radio over Fiber Link Performance

    Get PDF
    This paper demonstrates an unprecedented novel neural network (NN)-based digital predistortion (DPD) solution to overcome the signal impairments and nonlinearities in Analog Optical fronthauls using radio over fiber (RoF) systems. DPD is realized with Volterra-based procedures that utilize indirect learning architecture (ILA) and direct learning architecture (DLA) that becomes quite complex. The proposed method using NNs evades issues associated with ILA and utilizes an NN to first model the RoF link and then trains an NN-based predistorter by backpropagating through the RoF NN model. Furthermore, the experimental evaluation is carried out for Long Term Evolution 20 MHz 256 quadraturre amplitude modulation (QAM) modulation signal using an 850 nm Single Mode VCSEL and Standard Single Mode Fiber to establish a comparison between the NN-based RoF link and Volterra-based Memory Polynomial and Generalized Memory Polynomial using ILA. The efficacy of the DPD is examined by reporting the Adjacent Channel Power Ratio and Error Vector Magnitude. The experimental findings imply that NN-DPD convincingly learns the RoF nonlinearities which may not suit a Volterra-based model, and hence may offer a favorable trade-off in terms of computational overhead and DPD performance
    corecore