304 research outputs found

    A One-dimensional HEVC video steganalysis method using the Optimality of Predicted Motion Vectors

    Full text link
    Among steganalysis techniques, detection against motion vector (MV) domain-based video steganography in High Efficiency Video Coding (HEVC) standard remains a hot and challenging issue. For the purpose of improving the detection performance, this paper proposes a steganalysis feature based on the optimality of predicted MVs with a dimension of one. Firstly, we point out that the motion vector prediction (MVP) of the prediction unit (PU) encoded using the Advanced Motion Vector Prediction (AMVP) technique satisfies the local optimality in the cover video. Secondly, we analyze that in HEVC video, message embedding either using MVP index or motion vector differences (MVD) may destroy the above optimality of MVP. And then, we define the optimal rate of MVP in HEVC video as a steganalysis feature. Finally, we conduct steganalysis detection experiments on two general datasets for three popular steganography methods and compare the performance with four state-of-the-art steganalysis methods. The experimental results show that the proposed optimal rate of MVP for all cover videos is 100\%, while the optimal rate of MVP for all stego videos is less than 100\%. Therefore, the proposed steganography scheme can accurately distinguish between cover videos and stego videos, and it is efficiently applied to practical scenarios with no model training and low computational complexity.Comment: Submitted to TCSV

    Detection of Motion Vector-Based Video Steganography by Adding or Subtracting One Motion Vector Value

    Get PDF
    In last decades the Steganography is an tremendous progress, at the same time there exist issues to detect the steganalysis in motion based video where the substance is reliably in motion conduct that makes that to detect it. Analyzing the difference between the rated motion value plays a crucial role that enables us to focus on difference between the locally optimal SAD and actual SAD after adding-or-subtracting-one operation on the motion value. Based on the motion vectors to play out the classification and extraction process at last, two features sets are been used based on the fact that most motion vectors are locally optimal for most video codec’s to complete this process. The conventional approaches announced the technique for proposed prevails to meet the requirement applications and detecting the steganalysis in videos compare in the literature

    An Efficient Video Steganography Algorithm Based on BCH Codes

    Get PDF
    © ASEE 2015In this paper, in order to improve the security and efficiency of the steganography algorithm, we propose an efficient video steganography algorithm based on the binary BCH codes. First the pixels’ positions of the video frames’ components are randomly permuted by using a private key. Moreover, the bits’ positions of the secret message are also permuted using the same private key. Then, the secret message is encoded by applying BCH codes (n, k, t), and XORed with random numbers before the embedding process in order to protect the message from being read. The selected embedding area in each Y, U, and V frame components is randomly chosen, and will differ from frame to frame. The embedding process is achieved by hiding each of the encoded blocks into the 3-2-2 least significant bit (LSB) of the selected YUV pixels. Experimental results have demonstrated that the proposed algorithm have a high embedding efficiency, high embedding payload, and resistant against hackers

    Data Hiding in Digital Video

    Get PDF
    With the rapid development of digital multimedia technologies, an old method which is called steganography has been sought to be a solution for data hiding applications such as digital watermarking and covert communication. Steganography is the art of secret communication using a cover signal, e.g., video, audio, image etc., whereas the counter-technique, detecting the existence of such as a channel through a statistically trained classifier, is called steganalysis. The state-of-the art data hiding algorithms utilize features; such as Discrete Cosine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover signal to convey the message to the receiver side. The goal of embedding algorithm is to maximize the number of bits sent to the decoder side (embedding capacity) with maximum robustness against attacks while keeping the perceptual and statistical distortions (security) low. Data Hiding schemes are characterized by these three conflicting requirements: security against steganalysis, robustness against channel associated and/or intentional distortions, and the capacity in terms of the embedded payload. Depending upon the application it is the designer\u27s task to find an optimum solution amongst them. The goal of this thesis is to develop a novel data hiding scheme to establish a covert channel satisfying statistical and perceptual invisibility with moderate rate capacity and robustness to combat steganalysis based detection. The idea behind the proposed method is the alteration of Video Object (VO) trajectory coordinates to convey the message to the receiver side by perturbing the centroid coordinates of the VO. Firstly, the VO is selected by the user and tracked through the frames by using a simple region based search strategy and morphological operations. After the trajectory coordinates are obtained, the perturbation of the coordinates implemented through the usage of a non-linear embedding function, such as a polar quantizer where both the magnitude and phase of the motion is used. However, the perturbations made to the motion magnitude and phase were kept small to preserve the semantic meaning of the object motion trajectory. The proposed method is well suited to the video sequences in which VOs have smooth motion trajectories. Examples of these types could be found in sports videos in which the ball is the focus of attention and exhibits various motion types, e.g., rolling on the ground, flying in the air, being possessed by a player, etc. Different sports video sequences have been tested by using the proposed method. Through the experimental results, it is shown that the proposed method achieved the goal of both statistical and perceptual invisibility with moderate rate embedding capacity under AWGN channel with varying noise variances. This achievement is important as the first step for both active and passive steganalysis is the detection of the existence of covert channel. This work has multiple contributions in the field of data hiding. Firstly, it is the first example of a data hiding method in which the trajectory of a VO is used. Secondly, this work has contributed towards improving steganographic security by providing new features: the coordinate location and semantic meaning of the object

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application

    Get PDF
    Protecting information on various communication media is considered an essential requirement in the present information transmission technology. So, there is a continuous search around different modern techniques that may be used to protect the data from the attackers. Steganography is one of those techniques that can be used to maintain the copyright by employing it to cover the publisher logo image inside the video frames. Nowadays, most of the popular known of the Video-Steganography methods become a conventional technique to the attacker, so there is a requirement for a modern and smart strategy to protect the copyright of the digital video file. Where this proposed system goal to create a hybrid system that combines the properties of Cryptography and Steganography work to protect the copyright hidden data from different attack types with maintaining of characteristics of the original video (quality and resolution). In this article, a modern Video-Steganography method is presented by employing the benefits of TC (Turbo code) to encrypt the pixels of logo image and Least two Significant Bit Technique procedure to embed the encryption pixels inside the frames of the video file. The insertion is performed in the frequency domain by applying the Fast Fourier Transform (FFT)on the video frames. The examination of the suggested architecture is done by terms of Structural Similarity Index, MSE (mean squared error), and PSNR (peak signal-to-noise ratio) by comparing between an original and extracted logo as well as between original and Steganographic video (averaged overall digital frames in the video). The simulation results show that this method proved high security, robustness, capacity and produces a substantial performance enhancement over the present known ways with fewer distortions in the quality of the vide

    Steganalysis of 3D objects using statistics of local feature sets

    Get PDF
    3D steganalysis aims to identify subtle invisible changes produced in graphical objects through digital watermarking or steganography. Sets of statistical representations of 3D features, extracted from both cover and stego 3D mesh objects, are used as inputs into machine learning classifiers in order to decide whether any information was hidden in the given graphical object. The features proposed in this paper include those representing the local object curvature, vertex normals, the local geometry representation in the spherical coordinate system. The effectiveness of these features is tested in various combinations with other features used for 3D steganalysis. The relevance of each feature for 3D steganalysis is assessed using the Pearson correlation coefficient. Six different 3D watermarking and steganographic methods are used for creating the stego-objects used in the evaluation study
    corecore