43,847 research outputs found

    Throughput Performance of an Adaptive ARQ Scheme in Rayleigh Fading Channels

    Get PDF
    Using a simulation study we analyze the throughput performance of Yao’s adaptive ARQ scheme in time-varying channels. The simulation takes into account the Rayleigh amplitude and the fast or the slow fading characteristics of a wireless channel, under a representative M-FSK modulation and Reed-Solomon coding scheme. We show that, for a specific set of design parameters, Yao’s adaptive procedure works well for all channel fading rates, except for moderately slow rates. By observing variations of packet error rates at a specified SNR we provide an explanation for these varied behaviors under different channel fading rates

    Design of adaptive bit interleaved TCM for Rayleigh fading channels

    Get PDF
    In this paper, we propose a bandwidth efficient error correction scheme, namely the variable rate adaptive bit-interleaved trellis coded modulation (ABICM), for wireless mobile channels. The code rate and modulation level are varied according to the current channel state to exploit the time-varying nature of the wireless channel. Design challenges to achieve symbol-by-symbol adaptation, component codes design, puncturing and interleaving design, adaptation thresholds determination are addressed. A multi-level puncturing scheme is proposed to tackle the problem of symbol-by-symbol adaptive puncturing and interleaving. We introduced the concept of equivalent distance spectrum for designing component codes of the ABICM system. Two operation modes, namely the constant throughput and the constant BER controls, are introduced. The design is illustrated with an example and it is found that there are significant gains relative to the fixed rate coding in terms of SNR and throughput. It is also found that the ABICM scheme is essentially not degraded in small interleaving depths. This makes the ABICM very suitable for real time applications.published_or_final_versio

    Performance Improvement for Vehicular Communications Using Alamouti Scheme with High Mobility, Journal of Telecommunications and Information Technology, 2020, nr 3

    Get PDF
    The IEEE 802.11p standard is the basic protocol for wireless access in a vehicular environment (WAVE), providing high throughput for multimedia and high quality for vehicular transmissions. However, IEEE 802.11p fails to offer any multi-antenna approaches. In this paper, a multipleinput single-output (MISO) implementation with orthogonal frequency division multiplexing (OFDM), aiming to improve the performance of IEEE 802.11p, is proposed. The authors investigate the impact of time-varying channel on the performance of Alamouti space-time block codes (STBC) in OFDM systems. The Alamouti STBC approach shows good performance in slow time-varying environments, while its Alamouti space frequency block codes (SFBC) counterpart performs better over fast time-varying environments. An adaptive switching scheme is proposed to select appropriate spaceblock coding (STBC or SFBC) in vehicular channels with high mobility levels. It is shown that the proposed adaptive scheme provides better performance compared with traditional spaceblock code

    Adaptive Network Coding Schemes for Satellite Communications

    Full text link
    In this paper, we propose two novel physical layer aware adaptive network coding and coded modulation schemes for time variant channels. The proposed schemes have been applied to different satellite communications scenarios with different Round Trip Times (RTT). Compared to adaptive network coding, and classical non-adaptive network coding schemes for time variant channels, as benchmarks, the proposed schemes demonstrate that adaptation of packet transmission based on the channel variation and corresponding erasures allows for significant gains in terms of throughput, delay and energy efficiency. We shed light on the trade-off between energy efficiency and delay-throughput gains, demonstrating that conservative adaptive approaches that favors less transmission under high erasures, might cause higher delay and less throughput gains in comparison to non-conservative approaches that favor more transmission to account for high erasures.Comment: IEEE Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC), 201

    Space-Time Trellis and Space-Time Block Coding Versus Adaptive Modulation and Coding Aided OFDM for Wideband Channels

    No full text
    Abstract—The achievable performance of channel coded spacetime trellis (STT) codes and space-time block (STB) codes transmitted over wideband channels is studied in the context of schemes having an effective throughput of 2 bits/symbol (BPS) and 3 BPS. At high implementational complexities, the best performance was typically provided by Alamouti’s unity-rate G2 code in both the 2-BPS and 3-BPS scenarios. However, if a low complexity implementation is sought, the 3-BPS 8PSK space-time trellis code outperfoms the G2 code. The G2 space-time block code is also combined with symbol-by-symbol adaptive orthogonal frequency division multiplex (AOFDM) modems and turbo convolutional channel codecs for enhancing the system’s performance. It was concluded that upon exploiting the diversity effect of the G2 space-time block code, the channel-induced fading effects are mitigated, and therefore, the benefits of adaptive modulation erode. In other words, once the time- and frequency-domain fades of the wideband channel have been counteracted by the diversity-aided G2 code, the benefits of adaptive modulation erode, and hence, it is sufficient to employ fixed-mode modems. Therefore, the low-complexity approach of mitigating the effects of fading can be viewed as employing a single-transmitter, single-receiver-based AOFDM modem. By contrast, it is sufficient to employ fixed-mode OFDM modems when the added complexity of a two-transmitter G2 scheme is affordable

    Network Coding Channel Virtualization Schemes for Satellite Multicast Communications

    Full text link
    In this paper, we propose two novel schemes to solve the problem of finding a quasi-optimal number of coded packets to multicast to a set of independent wireless receivers suffering different channel conditions. In particular, we propose two network channel virtualization schemes that allow for representing the set of intended receivers in a multicast group to be virtualized as one receiver. Such approach allows for a transmission scheme not only adapted to per-receiver channel variation over time, but to the network-virtualized channel representing all receivers in the multicast group. The first scheme capitalizes on a maximum erasure criterion introduced via the creation of a virtual worst per receiver per slot reference channel of the network. The second scheme capitalizes on a maximum completion time criterion by the use of the worst performing receiver channel as a virtual reference to the network. We apply such schemes to a GEO satellite scenario. We demonstrate the benefits of the proposed schemes comparing them to a per-receiver point-to-point adaptive strategy

    Energy Efficient Adaptive Network Coding Schemes for Satellite Communications

    Full text link
    In this paper, we propose novel energy efficient adaptive network coding and modulation schemes for time variant channels. We evaluate such schemes under a realistic channel model for open area environments and Geostationary Earth Orbit (GEO) satellites. Compared to non-adaptive network coding and adaptive rate efficient network-coded schemes for time variant channels, we show that our proposed schemes, through physical layer awareness can be designed to transmit only if a target quality of service (QoS) is achieved. As a result, such schemes can provide remarkable energy savings.Comment: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 24 March 201

    Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities

    Full text link
    Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure
    corecore