203 research outputs found

    Background foreground segmentation with RGB-D Kinect data: An efficient combination of classifiers

    Get PDF
    Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms

    Combining discriminative and model based approaches for hand pose estimation

    Get PDF
    In this paper we present an approach to hand pose estimation that combines both discriminative and modelbased methods to overcome the limitations of each technique in isolation. A Randomised Decision Forests (RDF) is used to provide an initial estimate of the regions of the hand. This initial segmentation provides constraints to which a 3D model is fitted using Rigid Body Dynamics. Model fitting is guided using point to surface constraints which bind a kinematic model of the hand to the depth cloud using the segmentation of the discriminative approach. This combines the advantages of both techniques, reducing the training requirements for discriminative classification and simplifying the optimization process involved in model fitting by incorporating physical constraints from the segmentation. Our experiments on two challenging sequences show that this combined method outperforms the current state-of-the-art approach

    Real Time Structured Light and Applications

    Get PDF

    Depth-Map-Assisted Texture and Depth Map Super-Resolution

    Get PDF
    With the development of video technology, high definition video and 3D video applications are becoming increasingly accessible to customers. The interactive and vivid 3D video experience of realistic scenes relies greatly on the amount and quality of the texture and depth map data. However, due to the limitations of video capturing hardware and transmission bandwidth, transmitted video has to be compressed which degrades, in general, the received video quality. This means that it is hard to meet the users’ requirements of high definition and visual experience; it also limits development of future applications. Therefore, image/video super-resolution techniques have been proposed to address this issue. Image super-resolution aims to reconstruct a high resolution image from single or multiple low resolution images captured of the same scene under different conditions. Based on the image type that needs to be super-resolved, image super-resolution includes texture and depth image super-resolutions. If classified based on the implementation methods, there are three main categories: interpolation-based, reconstruction-based and learning-based super-resolution algorithms. This thesis focuses on exploiting depth data in interpolation-based super-resolution algorithms for texture video and depth maps. Two novel texture and one depth super-resolution algorithms are proposed as the main contributions of this thesis. The first texture super-resolution algorithm is carried out in the Mixed Resolution (MR) multiview video system where at least one of the views is captured at Low Resolution (LR), while the others are captured at Full Resolution (FR). In order to reduce visual uncomfortableness and adapt MR video format for free-viewpoint television, the low resolution views are super-resolved to the target full resolution by the proposed virtual view assisted super resolution algorithm. The inter-view similarity is used to determine whether to fill the missing pixels in the super-resolved frame by virtual view pixels or by spatial interpolated pixels. The decision mechanism is steered by the texture characteristics of the neighbors of each missing pixel. Thus, the proposed method can recover the details in regions with edges while maintaining good quality at smooth areas by properly exploiting the high quality virtual view pixels and the directional correlation of pixels. The second texture super-resolution algorithm is based on the Multiview Video plus Depth (MVD) system, which consists of textures and the associated per-pixel depth data. In order to further reduce the transmitted data and the quality degradation of received video, a systematical framework to downsample the original MVD data and later on to super-resolved the LR views is proposed. At the encoder side, the rows of the two adjacent views are downsampled following an interlacing and complementary fashion, whereas, at the decoder side, the discarded pixels are recovered by fusing the virtual view pixels with the directional interpolated pixels from the complementary downsampled views. Consequently, with the assistance of virtual views, the proposed approach can effectively achieve these two goals. From previous two works, we can observe that depth data has big potential to be used in 3D video enhancement. However, due to the low spatial resolution of Time-of-Flight (ToF) depth camera generated depth images, their applications have been limited. Hence, in the last contribution of this thesis, a planar-surface-based depth map super-resolution approach is presented, which interpolates depth images by exploiting the equation of each detected planar surface. Both quantitative and qualitative experimental results demonstrate the effectiveness and robustness of the proposed approach over benchmark methods

    Wearable fusion system for assessment of motor function in lesion-symptom mapping studies

    Get PDF
    Lesion-symptom mapping studies are a critical component of addressing the relationship between brain and behaviour. Recent developments have yielded significant improvements in the imaging and detection of lesion profiles, but the quantification of motor outcomes is still largely performed by subjective and low-resolution standard clinical rating scales. This mismatch means than lesion-symptom mapping studies are limited in scope by scores which lack the necessary accuracy to fully quantify the subcomponents of motor function. The first study conducted aimed to develop a new automated system of motor function which addressed the limitations inherent in the clinical rating scales. A wearable fusion system was designed that included the attachment of inertial sensors to record the kinematics of upper extremity. This was combined with the novel application of mechanomyographic sensors in this field, to enable the quantification of hand/wrist function. Novel outputs were developed for this system which aimed to combine the validity of the clinical rating scales with the high accuracy of measurements possible with a wearable sensor system. This was achieved by the development of a sophisticated classification model which was trained on series of kinematic and myographic measures to classify the clinical rating scale. These classified scores were combined with a series of fine-grained clinical features derived from higher-order sensor metrics. The developed automated system graded the upper-extremity tasks of the Fugl-Meyer Assessment with a mean accuracy of 75\% for gross motor tasks and 66\% for the wrist/hand tasks. This accuracy increased to 85\% and 74\% when distinguishing between healthy and impaired function for each of these tasks. Several clinical features were computed to describe the subcomponents of upper extremity motor function. This fine-grained clinical feature set offers a novel means to complement the low resolution but well-validated standardised clinical rating scales. A second study was performed to utilise the fine-grained clinical feature set calculated in the previous study in a large-scale region-of-interest lesion-symptom mapping study. Statistically significant regions of motor dysfunction were found in the corticospinal tract and the internal capsule, which are consistent with other motor-based lesion-symptom mapping studies. In addition, the cortico-ponto-cerebellar tract was found to be statistically significant when testing with a clinical feature of hand/wrist motor function. This is a novel finding, potentially due to prior studies being limited to quantifying this subcomponent of motor function using standard clinical rating scales. These results indicate the validity and potential of the clinical feature set to provide a more detailed picture of motor dysfunction in lesion-symptom mapping studies.Open Acces

    Real-time hand gesture recognition exploiting multiple 2D and 3D cues

    Get PDF
    The recent introduction of several 3D applications and stereoscopic display technologies has created the necessity of novel human-machine interfaces. The traditional input devices, such as keyboard and mouse, are not able to fully exploit the potential of these interfaces and do not offer a natural interaction. Hand gestures provide, instead, a more natural and sometimes safer way of interacting with computers and other machines without touching them. The use cases for gesture-based interfaces range from gaming to automatic sign language interpretation, health care, robotics, and vehicle automation. Automatic gesture recognition is a challenging problem that has been attaining a growing interest in the research field for several years due to its applications in natural interfaces. The first approaches, based on the recognition from 2D color pictures or video only, suffered of the typical problems characterizing such type of data. Inter occlusions, different skin colors among users even of the same ethnic group and unstable illumination conditions, in facts, often made this problem intractable. Other approaches, instead, solved the previous problems by making the user wear sensorized gloves or hold proper tools designed to help the hand localization in the scene. The recent introduction in the mass market of novel low-cost range cameras, like the Microsoft Kinect, Asus XTION, Creative Senz3D, and the Leap Motion, has opened the way to innovative gesture recognition approaches exploiting the geometry of the framed scene. Most methods share a common gesture recognition pipeline based on firstly identifying the hand in the framed scene, then extracting some relevant features on the hand samples and finally exploiting suitable machine learning techniques in order to recognize the performed gesture from a predefined ``gesture dictionary''. This thesis, based on the previous rationale, proposes a novel gesture recognition framework exploiting both color and geometric cues from low-cost color and range cameras. The dissertation starts by introducing the automatic hand gesture recognition problem, giving an overview of the state-of-art algorithms and the recognition pipeline employed in this work. Then, it briefly describes the major low-cost range cameras and setups used in literature for color and depth data acquisition for hand gesture recognition purposes, highlighting their capabilities and limitations. The methods employed for respectively detecting the hand in the framed scene and segmenting it in its relevant parts are then analyzed with a higher level of detail. The algorithm first exploits skin color information and geometrical considerations for discarding the background samples, then it reliably detects the palm and the finger regions, and removes the forearm. For the palm detection, the method fits the largest circle inscribed in the palm region or, in a more advanced version, an ellipse. A set of robust color and geometric features which can be extracted from the fingers and palm regions, previously segmented, is then illustrated accurately. Geometric features describe properties of the hand contour from its curvature variations, the distances in the 3D space or in the image plane of its points from the hand center or from the palm, or extract relevant information from the palm morphology and from the empty space in the hand convex hull. Color features exploit, instead, the histogram of oriented gradients (HOG), local phase quantization (LPQ) and local ternary patterns (LTP) algorithms to provide further helpful cues from the hand texture and the depth map treated as a grayscale image. Additional features extracted from the Leap Motion data complete the gesture characterization for a more reliable recognition. Moreover, the thesis also reports a novel approach jointly exploiting the geometric data provided by the Leap Motion and the depth data from a range camera for extracting the same depth features with a significantly lower computational effort. This work then addresses the delicate problem of constructing a robust gesture recognition model from the features previously described, using multi-class Support Vector Machines, Random Forests or more powerful ensembles of classifiers. Feature selection techniques, designed to detect the smallest subset of features that allow to train a leaner classification model without a significant accuracy loss, are also considered. The proposed recognition method, tested on subsets of the American Sign Language and experimentally validated, reported very high accuracies. The results showed also how higher accuracies are obtainable by combining proper sets of complementary features and using ensembles of classifiers. Moreover, it is worth noticing that the proposed approach is not sensor dependent, that is, the recognition algorithm is not bound to a specific sensor or technology adopted for the depth data acquisition. Eventually, the gesture recognition algorithm is able to run in real-time even in absence of a thorough optimization, and may be easily extended in a near future with novel descriptors and the support for dynamic gestures
    • 

    corecore