7,447 research outputs found

    Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization

    Full text link
    Multiplicative noise (also known as speckle noise) models are central to the study of coherent imaging systems, such as synthetic aperture radar and sonar, and ultrasound and laser imaging. These models introduce two additional layers of difficulties with respect to the standard Gaussian additive noise scenario: (1) the noise is multiplied by (rather than added to) the original image; (2) the noise is not Gaussian, with Rayleigh and Gamma being commonly used densities. These two features of multiplicative noise models preclude the direct application of most state-of-the-art algorithms, which are designed for solving unconstrained optimization problems where the objective has two terms: a quadratic data term (log-likelihood), reflecting the additive and Gaussian nature of the noise, plus a convex (possibly nonsmooth) regularizer (e.g., a total variation or wavelet-based regularizer/prior). In this paper, we address these difficulties by: (1) converting the multiplicative model into an additive one by taking logarithms, as proposed by some other authors; (2) using variable splitting to obtain an equivalent constrained problem; and (3) dealing with this optimization problem using the augmented Lagrangian framework. A set of experiments shows that the proposed method, which we name MIDAL (multiplicative image denoising by augmented Lagrangian), yields state-of-the-art results both in terms of speed and denoising performance.Comment: 11 pages, 7 figures, 2 tables. To appear in the IEEE Transactions on Image Processing

    Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics

    Full text link
    As two-dimensional fluid shells, lipid bilayer membranes resist bending and stretching but are unable to sustain shear stresses. This property gives membranes the ability to adopt dramatic shape changes. In this paper, a finite element model is developed to study static equilibrium mechanics of membranes. In particular, a viscous regularization method is proposed to stabilize tangential mesh deformations and improve the convergence rate of nonlinear solvers. The Augmented Lagrangian method is used to enforce global constraints on area and volume during membrane deformations. As a validation of the method, equilibrium shapes for a shape-phase diagram of lipid bilayer vesicle are calculated. These numerical techniques are also shown to be useful for simulations of three-dimensional large-deformation problems: the formation of tethers (long tube-like exetensions); and Ginzburg-Landau phase separation of a two-lipid-component vesicle. To deal with the large mesh distortions of the two-phase model, modification of vicous regularization is explored to achieve r-adaptive mesh optimization
    corecore