4,082 research outputs found

    A comparative analysis of adaptive middleware architectures based on computational reflection and aspect oriented programming to support mobile computing applications

    Get PDF
    Mobile computing applications are required to operate in environments in which the availability for resources and services may change significantly during system operation. As a result, mobile computing applications need to be capable of adapting to these changes to offer the best possible level of service to their users. However, traditional middleware is limited in its capability of adapting to environment changes and different users requirements. Computational Reflection and Aspect Oriented Programming paradigms have been used in the design and implementation of adaptive middleware architectures. In this paper, we propose two adaptive middleware architectures, one based on reflection and other based on aspects, which can be used to develop adaptive mobile applications. The reflection based architecture is compared to an aspect oriented based architecture from a quantitative perspective. The results suggest that middleware based on Aspect Oriented Programming can be used to build mobile adaptive applications that require less processor running time and more memory space than Computational Reflection while producing code that is easier to comprehend and modify.8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    A load-sharing architecture for high performance optimistic simulations on multi-core machines

    Get PDF
    In Parallel Discrete Event Simulation (PDES), the simulation model is partitioned into a set of distinct Logical Processes (LPs) which are allowed to concurrently execute simulation events. In this work we present an innovative approach to load-sharing on multi-core/multiprocessor machines, targeted at the optimistic PDES paradigm, where LPs are speculatively allowed to process simulation events with no preventive verification of causal consistency, and actual consistency violations (if any) are recovered via rollback techniques. In our approach, each simulation kernel instance, in charge of hosting and executing a specific set of LPs, runs a set of worker threads, which can be dynamically activated/deactivated on the basis of a distributed algorithm. The latter relies in turn on an analytical model that provides indications on how to reassign processor/core usage across the kernels in order to handle the simulation workload as efficiently as possible. We also present a real implementation of our load-sharing architecture within the ROme OpTimistic Simulator (ROOT-Sim), namely an open-source C-based simulation platform implemented according to the PDES paradigm and the optimistic synchronization approach. Experimental results for an assessment of the validity of our proposal are presented as well

    Autonomic log/restore for advanced optimistic simulation systems

    Get PDF
    In this paper we address state recoverability in optimistic simulation systems by presenting an autonomic log/restore architecture. Our proposal is unique in that it jointly provides the following features: (i) log/restore operations are carried out in a completely transparent manner to the application programmer, (ii) the simulation-object state can be scattered across dynamically allocated non-contiguous memory chunks, (iii) two differentiated operating modes, incremental vs non-incremental, coexist via transparent, optimized run-time management of dual versions of the same application layer, with dynamic selection of the best suited operating mode in different phases of the optimistic simulation run, and (iv) determinationof the best suited mode for any time frame is carried out on the basis of an innovative modeling/optimization approach that takes into account stability of each operating mode vs variations of the model execution parameters. © 2010 IEEE

    VCube-PS: A Causal Broadcast Topic-based Publish/Subscribe System

    Get PDF
    In this work we present VCube-PS, a topic-based Publish/Subscribe system built on the top of a virtual hypercube-like topology. Membership information and published messages are broadcast to subscribers (members) of a topic group over dynamically built spanning trees rooted at the publisher. For a given topic, the delivery of published messages respects the causal order. VCube-PS was implemented on the PeerSim simulator, and experiments are reported including a comparison with the traditional Publish/Subscribe approach that employs a single rooted static spanning-tree for message distribution. Results confirm the efficiency of VCube-PS in terms of scalability, latency, number and size of messages.Comment: Improved text and performance evaluation. Added proof for the algorithms (Section 3.4

    Precise service level agreements

    Get PDF
    SLAng is an XML language for defining service level agreements, the part of a contract between the client and provider of an Internet service that describes the quality attributes that the service is required to possess. We define the semantics of SLAng precisely by modelling the syntax of the language in UML, then embedding the language model in an environmental model that describes the structure and behaviour of services. The presence of SLAng elements imposes behavioural constraints on service elements, and the precise definition of these constraints using OCL constitutes the semantic description of the language. We use the semantics to define a notion of SLA compatibility, and an extension to UML that enables the modelling of service situations as a precursor to analysis, implementation and provisioning activities

    Reflective federation of enterprises in open service ecosystem

    Get PDF
    Peer reviewe

    Total order in opportunistic networks

    Get PDF
    Opportunistic network applications are usually assumed to work only with unordered immutable messages, like photos, videos, or music files, while applications that depend on ordered or mutable messages, like chat or shared contents editing applications, are ignored. In this paper, we examine how total ordering can be achieved in an opportunistic network. By leveraging on existing dissemination and causal order algorithms, we propose a commutative replicated data type algorithm on the basis of Logoot for achieving total order without using tombstones in opportunistic networks where message delivery is not guaranteed by the routing layer. Our algorithm is designed to use the nature of the opportunistic network to reduce the metadata size compared to the original Logoot, and even to achieve in some cases higher hit rates compared to the dissemination algorithms when no order is enforced. Finally, we present the results of the experiments for the new algorithm by using an opportunistic network emulator, mobility traces, and Wikipedia pages.Peer ReviewedPostprint (author's final draft

    Designing application software in wide area network settings

    Get PDF
    Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described
    corecore