2,685 research outputs found

    Implementing Resiliency of Adaptive Multi-Factor Authentication Systems

    Get PDF
    Multifactor authentication (MFA) is getting increasingly more popular to safeguard systems from unauthorized users access. Adaptive Multi-Factor Authentication (A-MFA) is an enhanced version of MFA that provides a method to allow legitimate users to access a system using different factors that are changing based on different considerations. In other words, authentication factors include passwords, biometrics among others are adaptively selected by the authentication system based on criteria (e.g., whether the user is trying to log in from within system boundary, or whether or not the user is trying to access during organization operating hours). The criteria (i.e. triggering events) that A-MFA uses to select authentication factors adaptively are usually pre-defined and hard-coded in the authentication system itself. In this paper, the graphical user interface application is designed to add more resiliency to the existing Adaptive Multi-Factor Authentication (A-MFA) method by enabling system administrators to rank the triggering criteria based on the users’ roles, system assets, tolerance to risks, etc. The proposed tool allows system administrators to determine when to tighten and soften user access to the system. The tool uses multiple criteria decision making (MCDM) method to allow system admins to access the trustworthiness of user. Based on the trustworthiness of the user, the tool selects the number and complexity of the authentication methods. This tool will help to utilize the systems administrator situational awareness to improve security. This work aims to preserve the AMFA strengths and at the same time give system administrators more flexibility and authority in controlling access to systems

    A Research Perspective on Data Management Techniques for Federated Cloud Environment

    Get PDF
    Cloud computing has given a large scope of improvement in processing, storage and retrieval of data that is generated in huge amount from devices and users. Heterogenous devices and users generates the multidisciplinary data that needs to take care for easy and efficient storage and fast retrieval by maintaining quality and service level agreements. By just storing the data in cloud will not full fill the user requirements, the data management techniques has to be applied so that data adaptiveness and proactiveness characteristics are upheld. To manage the effectiveness of entire eco system a middleware must be there in between users and cloud service providers. Middleware has set of events and trigger based policies that will act on generated data to intermediate users and cloud service providers. For cloud service providers to deliver an efficient utilization of resources is one of the major issues and has scope of improvement in the federation of cloud service providers to fulfill user’s dynamic demands. Along with providing adaptiveness of data management in the middleware layer is challenging. In this paper, the policies of middleware for adaptive data management have been reviewed extensively. The main objectives of middleware are also discussed to accomplish high throughput of cloud service providers by means of federation and qualitative data management by means of adaptiveness and proactiveness. The cloud federation techniques have been studied thoroughly along with the pros and cons of it. Also, the strategies to do management of data has been exponentially explored

    A data taxonomy for adaptive multifactor authentication in the internet of health care things

    Get PDF
    The health care industry has faced various challenges over the past decade as we move toward a digital future where services and data are available on demand. The systems of interconnected devices, users, data, and working environments are referred to as the Internet of Health Care Things (IoHT). IoHT devices have emerged in the past decade as cost-effective solutions with large scalability capabilities to address the constraints on limited resources. These devices cater to the need for remote health care services outside of physical interactions. However, IoHT security is often overlooked because the devices are quickly deployed and configured as solutions to meet the demands of a heavily saturated industry. During the COVID-19 pandemic, studies have shown that cybercriminals are exploiting the health care industry, and data breaches are targeting user credentials through authentication vulnerabilities. Poor password use and management and the lack of multifactor authentication security posture within IoHT cause a loss of millions according to the IBM reports. Therefore, it is important that health care authentication security moves toward adaptive multifactor authentication (AMFA) to replace the traditional approaches to authentication. We identified a lack of taxonomy for data models that particularly focus on IoHT data architecture to improve the feasibility of AMFA. This viewpoint focuses on identifying key cybersecurity challenges in a theoretical framework for a data model that summarizes the main components of IoHT data. The data are to be used in modalities that are suited for health care users in modern IoHT environments and in response to the COVID-19 pandemic. To establish the data taxonomy, a review of recent IoHT papers was conducted to discuss the related work in IoHT data management and use in next-generation authentication systems. Reports, journal articles, conferences, and white papers were reviewed for IoHT authentication data technologies in relation to the problem statement of remote authentication and user management systems. Only publications written in English from the last decade were included (2012-2022) to identify key issues within the current health care practices and their management of IoHT devices. We discuss the components of the IoHT architecture from the perspective of data management and sensitivity to ensure privacy for all users. The data model addresses the security requirements of IoHT users, environments, and devices toward the automation of AMFA in health care. We found that in health care authentication, the significant threats occurring were related to data breaches owing to weak security options and poor user configuration of IoHT devices. The security requirements of IoHT data architecture and identified impactful methods of cybersecurity for health care devices, data, and their respective attacks are discussed. Data taxonomy provides better understanding, solutions, and improvements of user authentication in remote working environments for security features

    On the Impact of Energy Harvesting on Wireless Sensor Network Security

    Get PDF

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Wireless Device Authentication Techniques Using Physical-Layer Device Fingerprint

    Get PDF
    Due to the open nature of the radio signal propagation medium, wireless communication is inherently more vulnerable to various attacks than wired communication. Consequently, communication security is always one of the critical concerns in wireless networks. Given that the sophisticated adversaries may cover up their malicious behaviors through impersonation of legitimate devices, reliable wireless authentication is becoming indispensable to prevent such impersonation-based attacks through verification of the claimed identities of wireless devices. Conventional wireless authentication is achieved above the physical layer using upper-layer identities and key-based cryptography. As a result, user authenticity can even be validated for the malicious attackers using compromised security key. Recently, many studies have proven that wireless devices can be authenticated by exploiting unique physical-layer characteristics. Compared to the key-based approach, the possession of such physical-layer characteristics is directly associated with the transceiver\u27s unique radio-frequency hardware and corresponding communication environment, which are extremely difficult to forge in practice. However, the reliability of physical-layer authentication is not always high enough. Due to the popularity of cooperative communications, effective implementation of physical-layer authentication in wireless relay systems is urgently needed. On the other hand, the integration with existing upper-layer authentication protocols still has many challenges, e.g., end-to-end authentication. This dissertation is motivated to develop novel physical-layer authentication techniques in addressing the aforementioned challenges. In achieving enhanced wireless authentication, we first specifically identify the technique challenges in authenticating cooperative amplify-and-forward (AF) relay. Since AF relay only works at the physical layer, all of the existing upper-layer authentication protocols are ineffective in identifying AF relay nodes. To solve this problem, a novel device fingerprint of AF relay consisting of wireless channel gains and in-phase and quadrature imbalances (IQI) is proposed. Using this device fingerprint, satisfactory authentication accuracy is achieved when the signal-to-noise ratio is high enough. Besides, the optimal AF relay identification system is studied to maximize the performance of identifying multiple AF relays in the low signal-to-noise regime and small IQI. The optimal signals for quadrature amplitude modulation and phase shift keying modulations are derived to defend against the repeated access attempts made by some attackers with specific IQIs. Exploring effective authentication enhancement technique is another key objective of this dissertation. Due to the fast variation of channel-based fingerprints as well as the limited range of device-specific fingerprints, the performance of physical-layer authentication is not always reliable. In light of this, the physical-layer authentication is enhanced in two aspects. On the one hand, the device fingerprinting can be strengthened by considering multiple characteristics. The proper characteristics selection strategy, measurement method and optimal weighted combination of the selected characteristics are investigated. On the other hand, the accuracy of fingerprint estimation and differentiation can be improved by exploiting diversity techniques. To be specific, cooperative diversity in the form of involving multiple collaborative receivers is used in differentiating both frequency-dependent and frequency-independent device fingerprints. As a typical combining method of the space diversity techniques, the maximal-ratio combining is also applied in the receiver side to combat the channel degeneration effect and increase the fingerprint-to-noise ratio. Given the inherent weaknesses of the widely utilized upper-layer authentication protocols, it is straightforward to consider physical-layer authentication as an effective complement to reinforce existing authentication schemes. To this end, a cross-layer authentication is designed to seamlessly integrate the physical-layer authentication with existing infrastructures and protocols. The specific problems such as physical-layer key generation as well as the end-to-end authentication in networks are investigated. In addition, the authentication complexity reduction is also studied. Through prediction, pre-sharing and reusing the physical-layer information, the authentication processing time can be significantly shortened
    • …
    corecore