1,434 research outputs found

    Constant beamwidth generalised sidelobe canceller

    Get PDF
    In this paper, we proposed a constant beamwidth discrete Fourier transform (DFT) beamformer based on the generalised sidelobe canceller (GSC). Broadband signals are decomposed into frequency bins which are grouped into octaves and tapered individually. The resulting beampattern possesses constant beamwidth across the entire operating spectrum, thus ensuring uniform spatial resolution. Further incorporation of the GSC allows adaptive nulling of interference to coincide with uniform resolution, enhancing the beamformer’s performance. However, modification to the constraint equation of the standard GSC is required to account for the frequency-dependent weighting of sensors

    Broadband adaptive beamforming with low complexity and frequency invariant response

    No full text
    This thesis proposes different methods to reduce the computational complexity as well as increasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to perform unconstrained adaptive optimisation.A direct DFT implementation, by which broadband signals are decomposed into frequency bins and processed by independent narrowband beamforming algorithms, is thought to be computationally optimum. However, this setup fail to converge to the time domain minimum mean square error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor, overlap-save based GSC beamforming structures have been explored. This system address the minimisation of the time domain MMSE, with a significant reduction in computational complexity when compared to time-domain implementations, and show a better convergence behaviour than the IFB beamformer. By studying the effects that the blocking matrix has on the adaptive process for the overlap-save beamformer, several modifications are carried out to enhance both the simplicity of the algorithm as well as its convergence speed. These modifications result in the GSC beamformer utilising a significantly lower computational complexity compare to the time domain approach while offering similar convergence characteristics.In certain applications, especially in the areas of acoustics, there is a need to maintain constant resolution across a wide operating spectrum that may extend across several octaves. To attain constant beamwidth is difficult, particularly if uniformly spaced linear sensor array are employed for beamforming, since spatial resolution is reciprocally proportional to both the array aperture and the frequency. A scaled aperture arrangement is introduced for the subband based GSC beamformer to achieve near uniform resolution across a wide spectrum, whereby an octave-invariant design is achieved. This structure can also be operated in conjunction with adaptive beamforming algorithms. Frequency dependent tapering of the sensor signals is proposed in combination with the overlap-save GSC structure in order to achieve an overall frequency-invariant characteristic. An adaptive version is proposed for frequency-invariant overlap-save GSC beamformer. Broadband adaptive beamforming algorithms based on the family of least mean squares (LMS) algorithms are known to exhibit slow convergence if the input signal is correlated. To improve the convergence of the GSC when based on LMS-type algorithms, we propose the use of a broadband eigenvalue decomposition (BEVD) to decorrelate the input of the adaptive algorithm in the spatial dimension, for which an increase in convergence speed can be demonstrated over other decorrelating measures, such as the Karhunen-Loeve transform. In order to address the remaining temporal correlation after BEVD processing, this approach is combined with subband decomposition through the use of oversampled filter banks. The resulting spatially and temporally decorrelated GSC beamformer provides further enhanced convergence speed over spatial or temporal decorrelation methods on their own

    Adaptive beamforming using frequency invariant uniform concentric circular arrays

    Get PDF
    This paper proposes new adaptive beamforming algorithms for a class of uniform concentric circular arrays (UCCAs) having near-frequency invariant characteristics. The basic principle of the UCCA frequency invariant beamformer (FIB) is to transform the received signals to the phase mode representation and remove the frequency dependence of individual phase modes through the use of a digital beamforming or compensation network. As a result, the far field pattern of the array is electronic steerable and is approximately invariant over a wider range of frequencies than the uniform circular arrays (UCAs). The beampattern is governed by a small set of variable beamformer weights. Based on the minimum variance distortionless response (MVDR) and generalized sidelobe canceller (GSC) methods, new recursive adaptive beamforming algorithms for UCCA-FIB are proposed. In addition, robust versions of these adaptive beamforming algorithms for mitigating direction-of-arrival (DOA) and sensor position errors are developed. Simulation results show that the proposed adaptive UCCA-FIBs converge much faster and reach a considerable lower steady-state error than conventional broadband UCCA beamformers without using the compensation network. Since fewer variable multipliers are required in the proposed algorithms, it also leads to lower arithmetic complexity and faster tracking performance than conventional methods. © 2007 IEEE.published_or_final_versio

    Adaptive beamforming using uniform concentric circular arrays with frequency invariant characteristics

    Get PDF
    This paper proposes a new method for adaptive beamforming using uniform concentric circular array (UCCA) that has nearly frequency invariant (FI) characteristics. The basic principle of FI UCCA is to transform the received signals to the phase mode and compensate for the frequency dependency of the individual phase mode through the use of a digital beamforming network. The far field pattern of the array is then determined by a set of weights and it is approximately invariant over a wide range of frequencies. Therefore, the minimum variance beamforming (MVB) approach can be used to adapt the small set of weights, as if it is a narrowband array, Design examples and simulation are given to demonstrate the usefulness of the proposed FI UCCA in broadband DOA estimation and beamforming. © 2005 IEEE.published_or_final_versio

    Frequency invariant uniform concentric circular arrays with directional elements

    Get PDF
    A new approach for designing frequency invariant (FI) uniform concentric circular arrays (UCCAs) with directional elements is proposed, and their applications to direction-of-arrival (DOA) estimation and adaptive beamforming are studied. By treating the sensors along the radial direction of the UCCA as linear subarrays and using appropriately designed beamformers, each subarray is transformed to a virtual element with appropriate directivity. Consequently, the whole UCCA can be viewed as a virtual uniform circular array (UCA) with desired element directivity for broadband processing. By extending the approach for designing FI-UCAs, the frequency dependency of the phase modes of the virtual UCA is compensated to facilitate broadband DOA and adaptive beamforming. Both the linear array beamformers (LABFs) and compensation filters can be designed separately using second- order cone programming (SOCP). Moreover, a new method to tackle the possible noise amplification problem in such large arrays by imposing additional norm constraints on the design of the compensation filters is proposed. The advantages of this decoupled approach are 1) the complicated design problem of large UCCAs can be decoupled into simpler problems of designing the LABFs and compensation filters, and 2) directional elements, which are frequently encountered, can be treated readily under the proposed framework. Numerical examples are provided to demonstrate the effectiveness and improvement of the proposed methods in DOA estimation, adaptive beamforming, and elevation control over the conventional FI-UCCA design method.published_or_final_versio

    Theory and design of uniform concentric spherical arrays with frequency invariant characteristics

    Get PDF
    IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 14-19 May 2006This paper proposes a new digital beamformer for uniform concentric spherical array (UCSA) having nearly frequency invariant (FI) characteristics. The basic principle is to transform the received signals to the phase mode and remove the frequency dependency of the individual phase mode through the use of a digital beamforming network. It is shown that the far field pattern of the array is determined by a set of weights and it is approximately invariant over a wide range of frequencies. FI UCSAs are electronic steerable in both the azimuth angle and elevation angle, unlike their concentric circular array counterpart. A design example is given to demonstrate the design and performance of the proposed FI UCSA. © 2006 IEEE.published_or_final_versio

    Theory and design of uniform concentric circular arrays with frequency invariant characteristics

    Get PDF
    This paper proposes a new digital beamformer for uniform concentric circular array (UCCA) having nearly frequency invariant (FI) characteristics. The basic principle is to transform the received signals to the phase mode and remove the frequency dependency of the individual phase mode through the use of a digital beamforming network. The far field pattern of the array is determined by a set of weights and it is approximately invariant over a wide range of frequencies. Compared with FI uniform circular array (UCA), FI UCCAs are able to achieve a wider bandwidth. Design examples are given to demonstrate the principle of the proposed UCCA-FIB and its application to broadband DOA estimation of coherent sources. © 2005 IEEE.published_or_final_versio
    corecore