11,560 research outputs found

    Medical Image Segmentation by Water Flow

    No full text
    We present a new image segmentation technique based on the paradigm of water flow and apply it to medical images. The force field analogy is used to implement the major water flow attributes like water pressure, surface tension and adhesion so that the model achieves topological adaptability and geometrical flexibility. A new snake-like force functional combining edge- and region-based forces is introduced to produce capability for both range and accuracy. The method has been assessed qualitatively and quantitatively, and shows decent detection performance as well as ability to handle noise

    Intensity Segmentation of the Human Brain with Tissue dependent Homogenization

    Get PDF
    High-precision segmentation of the human cerebral cortex based on T1-weighted MRI is still a challenging task. When opting to use an intensity based approach, careful data processing is mandatory to overcome inaccuracies. They are caused by noise, partial volume effects and systematic signal intensity variations imposed by limited homogeneity of the acquisition hardware. We propose an intensity segmentation which is free from any shape prior. It uses for the first time alternatively grey (GM) or white matter (WM) based homogenization. This new tissue dependency was introduced as the analysis of 60 high resolution MRI datasets revealed appreciable differences in the axial bias field corrections, depending if they are based on GM or WM. Homogenization starts with axial bias correction, a spatially irregular distortion correction follows and finally a noise reduction is applied. The construction of the axial bias correction is based on partitions of a depth histogram. The irregular bias is modelled by Moody Darken radial basis functions. Noise is eliminated by nonlinear edge preserving and homogenizing filters. A critical point is the estimation of the training set for the irregular bias correction in the GM approach. Because of intensity edges between CSF (cerebro spinal fluid surrounding the brain and within the ventricles), GM and WM this estimate shows an acceptable stability. By this supervised approach a high flexibility and precision for the segmentation of normal and pathologic brains is gained. The precision of this approach is shown using the Montreal brain phantom. Real data applications exemplify the advantage of the GM based approach, compared to the usual WM homogenization, allowing improved cortex segmentation

    Deep Learning and Adaptive Graph-Based Growing Contours for Agricultural Field Extraction

    Get PDF
    Field mapping and information on agricultural landscapes is of increasing importance for many applications. Monitoring schemes and national cadasters provide a rich source of information but their maintenance and regular updating is costly and labor-intensive. Automatized mapping of ïŹelds based on remote sensing imagery may aid in this task and allow for a faster and more regular observation. Although remote sensing has seen extensive use in agricultural research topics, such as plant health monitoring, crop type classiïŹcation, yield prediction, and irrigation, ïŹeld delineation and extraction has seen comparatively little research interest. In this study, we present a ïŹeld boundary detection technique based on deep learning and a variety of image features, and combine it with the graph-based growing contours (GGC) method to extract agricultural ïŹelds in a study area in northern Germany. The boundary detection step only requires red, green, and blue (RGB) data and is therefore largely independent of the sensor used. We compare diïŹ€erent image features based on color and luminosity information and evaluate their usefulness for the task of ïŹeld boundary detection. A model based on texture metrics, gradient information, Hessian matrix eigenvalues, and local statistics showed good results with accuracies up to 88.2%, an area under the ROC curve (AUC) of up to 0.94, and F1 score of up to 0.88. The exclusive use of these universal image features may also facilitate transferability to other regions. We further present modiïŹcations to the GGC method intended to aid in upscaling of the method through process acceleration with a minimal eïŹ€ect on results. We combined the boundary detection results with the GGC method for ïŹeld polygon extraction. Results were promising, with the new GGC version performing similarly or better than the original version while experiencing an acceleration of 1.3× to 2.3× on diïŹ€erent subsets and input complexities. Further research may explore other applications of the GGC method outside agricultural remote sensing and ïŹeld extraction

    Statistical and image processing techniques for remote sensing in agricultural monitoring and mapping

    Get PDF
    Throughout most of history, increasing agricultural production has been largely driven by expanded land use, and – especially in the 19th and 20th century – by technological innovation in breeding, genetics and agrochemistry as well as intensification through mechanization and industrialization. More recently, information technology, digitalization and automation have started to play a more significant role in achieving higher productivity with lower environmental impact and reduced use of resources. This includes two trends on opposite scales: precision farming applying detailed observations on sub-field level to support local management, and large-scale agricultural monitoring observing regional patterns in plant health and crop productivity to help manage macroeconomic and environmental trends. In both contexts, remote sensing imagery plays a crucial role that is growing due to decreasing costs and increasing accessibility of both data and means of processing and analysis. The large archives of free imagery with global coverage, can be expected to further increase adoption of remote sensing techniques in coming years. This thesis addresses multiple aspects of remote sensing in agriculture by presenting new techniques in three distinct research topics: (1) remote sensing data assimilation in dynamic crop models; (2) agricultural field boundary detection from remote sensing observations; and (3) contour extraction and field polygon creation from remote sensing imagery. These key objectives are achieved through combining methods of probability analysis, uncertainty quantification, evolutionary learning and swarm intelligence, graph theory, image processing, deep learning and feature extraction. Four new techniques have been developed. Firstly, a new data assimilation technique based on statistical distance metrics and probability distribution analysis to achieve a flexible representation of model- and measurement-related uncertainties. Secondly, a method for detecting boundaries of agricultural fields based on remote sensing observations designed to only rely on image-based information in multi-temporal imagery. Thirdly, an improved boundary detection approach based on deep learning techniques and a variety of image features. Fourthly, a new active contours method called Graph-based Growing Contours (GGC) that allows automatized extractionof complex boundary networks from imagery. The new approaches are tested and evaluated on multiple study areas in the states of Schleswig-Holstein, Niedersachsen and Sachsen-Anhalt, Germany, based on combine harvester measurements, cadastral data and manual mappings. All methods were designed with flexibility and applicability in mind. They proved to perform similarly or better than other existing methods and showed potential for large-scale application and their synergetic use. Thanks to low data requirements and flexible use of inputs, their application is neither constrained to the specific applications presented here nor the use of a specific type of sensor or imagery. This flexibility, in theory, enables their use even outside of the field of remote sensing.Landwirtschaftliche ProduktivitĂ€tssteigerung wurde historisch hauptsĂ€chlich durch Erschließung neuer AnbauflĂ€chen und spĂ€ter, insbesondere im 19. und 20. Jahrhundert, durch technologische Innovation in ZĂŒchtung, Genetik und Agrarchemie sowie Intensivierung in Form von Mechanisierung und Industrialisierung erreicht. In jĂŒngerer Vergangenheit spielen jedoch Informationstechnologie, Digitalisierung und Automatisierung zunehmend eine grĂ¶ĂŸere Rolle, um die ProduktivitĂ€t bei reduziertem Umwelteinfluss und Ressourcennutzung weiter zu steigern. Daraus folgen zwei entgegengesetzte Trends: Zum einen Precision Farming, das mithilfe von Detailbeobachtungen die lokale Feldarbeit unterstĂŒtzt, und zum anderen großskalige landwirtschaftliche Beobachtung von Bestands- und Ertragsmustern zur Analyse makroökonomischer und ökologischer Trends. In beiden FĂ€llen spielen Fernerkundungsdaten eine entscheidende Rolle und gewinnen dank sinkender Kosten und zunehmender VerfĂŒgbarkeit, sowohl der Daten als auch der Möglichkeiten zu ihrer Verarbeitung und Analyse, weiter an Bedeutung. Die VerfĂŒgbarkeit großer, freier Archive von globaler Abdeckung werden in den kommenden Jahren voraussichtlich zu einer zunehmenden Verwendung fĂŒhren. Diese Dissertation behandelt mehrere Aspekte der Fernerkundungsanwendung in der Landwirtschaft und prĂ€sentiert neue Methoden zu drei Themenbereichen: (1) Assimilation von Fernerkundungsdaten in dynamischen Agrarmodellen; (2) Erkennung von landwirtschaftlichen Feldgrenzen auf Basis von Fernerkundungsbeobachtungen; und (3) Konturextraktion und Erstellung von Polygonen aus Fernerkundungsaufnahmen. Zur Bearbeitung dieser Zielsetzungen werden verschiedene Techniken aus der Wahrscheinlichkeitsanalyse, Unsicherheitsquantifizierung, dem evolutionĂ€ren Lernen und der Schwarmintelligenz, der Graphentheorie, dem Bereich der Bildverarbeitung, Deep Learning und Feature-Extraktion kombiniert. Es werden vier neue Methoden vorgestellt. Erstens, eine neue Methode zur Datenassimilation basierend auf statistischen Distanzmaßen und Wahrscheinlichkeitsverteilungen zur flexiblen Abbildung von Modell- und Messungenauigkeiten. Zweitens, eine neue Technik zur Erkennung von Feldgrenzen, ausschließlich auf Basis von Bildinformationen aus multi-temporalen Fernerkundungsdaten. Drittens, eine verbesserte Feldgrenzenerkennung basierend auf Deep Learning Methoden und verschiedener Bildmerkmale. Viertens, eine neue Aktive Kontur Methode namens Graph-based Growing Contours (GGC), die es erlaubt, komplexe Netzwerke von Konturen aus Bildern zu extrahieren. Alle neuen AnsĂ€tze werden getestet und evaluiert anhand von MĂ€hdreschermessungen, Katasterdaten und manuellen Kartierungen in verschiedenen Testregionen in den BundeslĂ€ndern Schleswig-Holstein, Niedersachsen und Sachsen-Anhalt. Alle vorgestellten Methoden sind auf FlexibilitĂ€t und Anwendbarkeit ausgelegt. Im Vergleich zu anderen Methoden zeigten sie vergleichbare oder bessere Ergebnisse und verdeutlichten das Potenzial zur großskaligen Anwendung sowie kombinierter Verwendung. Dank der geringen Anforderungen und der flexiblen Verwendung verschiedener Eingangsdaten ist die Nutzung nicht nur auf die hier beschriebenen Anwendungen oder bestimmte Sensoren und Bilddaten beschrĂ€nkt. Diese FlexibilitĂ€t erlaubt theoretisch eine breite Anwendung, auch außerhalb der Fernerkundung
    • 

    corecore