15 research outputs found

    The Novel PAPR Reduction Schemes for O‐OFDM‐Based Visible Light Communications

    Get PDF
    In this chapter, we propose two novel peak-to-average power ratio (PAPR) reduction schemes for the asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) scheme used in the visible light communications (VLC) system. In the first scheme, we implement the Toeplitz matrix based Gaussian blur method to reduce the high PAPR of ACO-OFDM at the transmitter and use the orthogonal matching pursuit algorithm to recover the original ACO-OFDM frame at the receiver. Simulation results show that for the 256-subcarrier ACO-OFDM system a ~6 dB improvement in PAPR is achieved compared with the original ACO-OFDM in terms of the complementary cumulative distribution function (CCDF), while maintaining a competitive bit-error rate performance compared with the ideal ACO-OFDM lower bound. In the second scheme, we propose an improved hybrid optical orthogonal frequency division multiplexing (O-OFDM) and pulse-width modulation (PWM) scheme to reduce the PAPR for ACO-OFDM. The bipolar O-OFDM signal without negative clipping is converted into a PWM format where the leading and trailing edges carry the frame synchronization and modulated information, respectively. The simulation and experimental results demonstrate that the proposed OFDM-PWM scheme offers a significant PAPR reduction compared to the ACO-OFDM with an improved bit error rate

    OFDM 시스템을 위한 새로운 저 복잡도 SLM 방식 및 클리핑 잡음 제거 기법 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 2. 노종선.In this dissertation, several research results for the peak-to-average power ratio (PAPR) reduction schemes for orthogonal frequency division multiplexing (OFDM) systems are discussed. First, the basic principle and implementation of the OFDM systems are introduced, where high PAPR of OFDM signal is one of main drawbacks of OFDM systems. Thus, many PAPR reduction schemes to solve this problem have been studied such as clipping, selected mapping (SLM), partial transmit sequence (PTS), and tone reservation. In the first part of this dissertation, a low-complexity SLM scheme is proposed, where the proposed SLM scheme generates alternative OFDM signal sequences by cyclically shifting the connections in each subblock at an intermediate stage of inverse fast Fourier transform (IFFT). Compared with the conventional SLM scheme, the proposed SLM scheme achieves similar PAPR reduction performance with much lower computational complexity and no bit error rate (BER) degradation. The performance of the proposed SLM scheme is analyzed mathematically and verified through numerical analysis. Also, it is shown that the proposed SLM scheme has the lowest computational complexity among the existing low-complexity SLM schemes exploiting the signals at an intermediate stage of IFFT. In the second part of this dissertation, an efficient selection (ES) method of the OFDM signal sequence with the minimum PAPR among many alternative OFDM signal sequences is proposed, which can be used for various SLM schemes. The proposed ES method efficiently generates each component of alternative OFDM signal by utilizing the structure of IFFT and calculates its power, and such generation procedure is interrupted if the calculated power is larger than the given threshold. By using the proposed ES method, the average computational complexity of considered SLM schemes is substantially reduced without degradation of PAPR reduction performance, which is confirmed by analytical and numerical results. In the third part of this dissertation, a clipping noise cancellation scheme using compressed sensing (CS) technique is proposed for OFDM systems. The proposed scheme does not need reserved tones or pilot tones, which is different from the previous works using CS technique. Instead, observations of the clipping noise in data tones are exploited, which leads to no loss of data rate. Also, in contrast with the previous works, the proposed scheme selectively exploits the reliable observations of the clipping noise instead of using whole observations, which results in minimizing the bad influence of channel noise. From the selected reliable observations, the clipping noise in time domain is reconstructed and cancelled by using CS technique. Simulation results show that the proposed scheme performs well compared to other conventional clipping noise cancellation schemes and shows the best performance in the severely clipped cases.1. Introduction 1 1.1. Background 1 1.2. Overview of Dissertation 4 2. OFDM Systems 6 2.1. OFDM System Model 7 2.2. Peak-to-Average Power Ratio 8 2.2.1. Definition of PAPR 9 2.2.2. Distribution of PAPR 9 3. PAPR Reduction Schemes 11 3.1. Clipping 11 3.1.1. Clipping at Transmitter 11 3.1.2. A Statistical Model of Clipped Signals 13 3.1.3. Conventional Receiver without Clipping Noise Cancellation Scheme 15 3.2. Selected Mapping 16 3.3. Low-Complexity SLM Schemes 18 3.3.1. Lims SLM Scheme [25] 18 3.3.2. Wangs SLM Scheme [22] 19 3.3.3. Baxleys SLM Scheme [27] 19 3.4. Tone Reservation 20 4. A New Low-Complexity SLM Scheme for OFDM Systems 22 4.1. A New SLM Scheme with Low-Complexity 23 4.1.1. A New SLM Scheme 23 4.1.2. Relation Between the Proposed SLM Scheme and the Conventional SLM Scheme 26 4.1.3. Good Shift Values for the Proposed SLM Scheme 28 4.1.4. Methods to Generate Good Shift Values 31 4.1.5. Computational Complexity 33 4.2. Simulation Results 36 4.3. Conclusions 37 5. An Efficient Selection Method of a Transmitted OFDM Signal Sequence for Various SLM Schemes 42 5.1. ES Method and Its Application to the Conventional SLM Scheme 43 5.1.1. Sequential Generation of OFDM Signal Components in the Conventional SLM Scheme 43 5.1.2. Application of the ES Method to the Conventional SLM Scheme 45 5.1.3. Complexity Analysis for Nyquist Sampling Case 47 5.1.3.1. Characteristics of a Nyquist-Sampled OFDM Signal Sequence 48 5.1.3.2. Derivation of KN(b) 49 5.1.3.3. Distribution of pBu(bu) 51 5.1.4. Complexity Analysis for Oversampling Case 52 5.1.4.1. Characteristics of a Four-Times Oversampled OFDM Signal Sequence 52 5.1.4.2. Derivation of K4N(b) 53 5.1.4.3. Distribution of pBu(bu) 54 5.1.5. Comparison between Analytical and Simulation Results 55 5.2. Application of the ES Method to Various Low-Complexity SLM Schemes 57 5.2.1. Lims SLM Scheme Aided by the ES Method 57 5.2.2. Wangs SLM Scheme Aided by the ES Method 58 5.2.3. Baxelys SLM Scheme Aided by the ES Method 58 5.3. Simulation Results 59 5.3.1. Simulation Results for the Conventional SLM Scheme Aided by the ES Method 59 5.3.2. Simulation Results for Low-Complexity SLM Schemes Aided by the ES Method 60 5.4. Conclusions 62 6. Clipping Noise Cancellation for OFDM Systems Using Reliable Observations Based on Compressed Sensing 68 6.1. Preliminaries 71 6.1.1. Notation 71 6.1.2. Compressed Sensing 71 6.2. Clipping Noise Cancellation for OFDM Systems Based on CS 73 6.2.1. Sparsity of c 73 6.2.1.1. Sparsity of c for Clipping at the Nyquist Sampling Rate 73 6.2.1.2. Sparsity of c for Clipping and Filtering at an Oversampling Rate 74 6.2.2. Reconstruction of the Clipping Noise c by CS 75 6.2.3. Construction of the Compressed Observation Vector Y 77 6.2.3.1. Which Observations Should Be Selected 78 6.2.3.2. Estimation of θ(k) Based on H1(k)Y (k) 78 6.2.3.3. Selection Criterion of Observations 81 6.2.4. Computational Complexity 81 6.3. Simulation Results 82 6.3.1. AWGN Channel 82 6.3.2. Rayleigh Fading Channel 83 6.4. Conclusion 86 7. Conclusions 93 Bibliography 96 초록 104Docto

    An enhanced multicarrier modulation system for mobile communications

    Get PDF
    PhD ThesisThe recent revolution in mobile communications and the increased demand on more efficient transmission systems influence the research to enhance and invent new modulation techniques. Orthogonal frequency division multiplexing with offset quadrature amplitude modulation (OFDM/OQAM) is one of the multicarrier modulations techniques that overcomes some of the weaknesses of the conventional OFDM in term of bandwidth and power efficiencies. This thesis presents a novel multicarrier modulation scheme with improved performance in mobile communications context. Initially, the theoretical principles behind OFDM and OFDM/OQAM are discussed and the advantages of OFDM/OQAM over OFDM are highlighted. The time-frequency localization of pulse shapes is examined over different types of pulses. The effect of the localization and the pulse choice on OFDM/OQAM performance is demonstrated. The first contribution is introducing a new variant of multicarrier modulation system based on the integration of the Walsh-Hadamard transform with the OFDM/OQAM modulator. The full analytical transmission model of the system is derived over flat fading and frequency selective channels. Next, because of the critical requirement of low implementation complexity in mobile systems, a new fast algorithm transform is developed to reduce the implementation complexity of the system. The introduced fast algorithm has demonstrated a remarkable 60 percent decrease in the hardware requirement compared to the cascaded configuration. Although, the problem of high peak to average power ratio (PAPR) is one of the main drawbacks that associated with most multicarrier modulation techniques, the new system achieved lower values compared to the conventional systems. Subsequently, three new algorithms to reduce PAPR named Walsh overlapped selective mapping (WOSLM) for a high PAPR reduction, simplified selective mapping (SSLM) for a very low implementation complexity and Walsh partial transmit sequence (WPTS), are developed. Finally, in order to assess the reliability of the presented system in this thesis at imperfect environments, the performance of the system is investigated in the presence of high power amplifier, channel estimation errors, and carrier frequency offset (CFO). Two channel estimations algorithms named enhanced pair of pilots (EPOP) and averaged enhanced pair of pilots (AEPOP), and one CFO estimator technique called frequency domain (FD) CFO estimator, are suggested to provide reliable performance.Ministry of Higher Education and Scientific Research (MOHSR) of Ira

    Development of digital predistorters for broadband power amplifiers in OFDM systems using the simplicial canonical piecewise linear function

    Get PDF
    Power amplifiers (PAs) are inherently nonlinear devices. Linearity of a PA can be achieved by backing off the PA to its linear region at the expense of power efficiency loss. For signals with high envelope fluctuation such OFDM system, large backoff is required, causing significant loss in power efficiency. Thus, backoff is not a favourable solution. Digital predistorters (PDs) are widely employed for linearizing PAs that are driven to the nonlinear regions. In broadband systems where PAs exhibit memory effects, the PDs are also required to compensate the memory effects. This thesis deals with the development of digital PDs for broadband PAs in OFDM systems using the Simplicial Canonical Piecewise Linear (SCPWL) function. The SCPWL function offers a few advantages over polynomial models. It imposes a saturation after the last breakpoint, making it suitable for modelling nonlinearities of PA and PD. The breakpoints of the function can be freely placed to allow optimum fitting of a given nonlinearity. It is suitable for modeling strong nonlinearities. Analysis of the SCPWL spectra property shows that the function models infinite order of intermodulation distortion, even with small number of breakpoints. The accuracy of the model can be improved by increasing the number of breakpoints. The original real-valued SCPWL function is extended to include memory structure and complex-valued coefficients, resulting in the proposed baseband SCPWL model with memory. The model is adopted in the development of the Hammerstein-SCPWL PD and memory-SCPWL PD. Vector projection methods are developed for static SCPWL PDs identification. Adaptive algorithms employing the indirect and direct learning architectures are developed for identifying the Hammerstein-SCPWL PD and memory-SCPWL PD. By exploiting the properties of the SCPWL function, the algorithms are simplified. A modified Wiener model estimator is employed to circumvent the non-convex cost function problem of block models. This further reduces the complexity of the Hammerstein PD algorithms. The thesis also analyses the effects of measurement noise on indirect learning SCPWL filter. Due to its linear basis function, the SCPWL filter coefficients do not suffer the coefficient bias effects which are observed in polynomial models. The performance of the proposed SCPWL PDs are compared with state-of-the-art polynomial-based PDs by simulations and measurements
    corecore