601 research outputs found

    Positive and Negative Evidence Accumulation Clustering for Sensor Fusion: An Application to Heartbeat Clustering

    Get PDF
    In this work, a new clustering algorithm especially geared towards merging data arising from multiple sensors is presented. The algorithm, called PN-EAC, is based on the ensemble clustering paradigm and it introduces the novel concept of negative evidence. PN-EAC combines both positive evidence, to gather information about the elements that should be grouped together in the final partition, and negative evidence, which has information about the elements that should not be grouped together. The algorithm has been validated in the electrocardiographic domain for heartbeat clustering, extracting positive evidence from the heartbeat morphology and negative evidence from the distances between heartbeats. The best result obtained on the MIT-BIH Arrhythmia database yielded an error of 1.44%. In the St. Petersburg Institute of Cardiological Technics 12-Lead Arrhythmia Database database (INCARTDB), an error of 0.601% was obtained when using two electrocardiogram (ECG) leads. When increasing the number of leads to 4, 6, 8, 10 and 12, the algorithm obtains better results (statistically significant) than with the previous number of leads, reaching an error of 0.338%. To the best of our knowledge, this is the first clustering algorithm that is able to process simultaneously any number of ECG leads. Our results support the use of PN-EAC to combine different sources of information and the value of the negative evidenceThis research was funded by the Ministry of Science, Innovation and Universities of Spain, and the European Regional Development Fund of the European Commission, Grant Nos. RTI2018-095324-B-I00, RTI2018-097122-A-I00, and RTI2018-099646-B-I00S

    Analysing multi-person timing in music and movement : event based methods

    Get PDF
    Accurate timing of movement in the hundreds of milliseconds range is a hallmark of human activities such as music and dance. Its study requires accurate measurement of the times of events (often called responses) based on the movement or acoustic record. This chapter provides a comprehensive over - view of methods developed to capture, process, analyse, and model individual and group timing [...] This chapter is structured in five main sections, as follows. We start with a review of data capture methods, working, in turn, through a low cost system to research simple tapping, complex movements, use of video, inertial measurement units, and dedicated sensorimotor synchronisation software. This is followed by a section on music performance, which includes topics on the selection of music materials, sound recording, and system latency. The identification of events in the data stream can be challenging and this topic is treated in the next section, first for movement then for music. Finally, we cover methods of analysis, including alignment of the channels, computation of between channel asynchrony errors and modelling of the data set

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port

    Towards a continuous biometric system based on ECG signals acquired on the steering wheel

    Get PDF
    Electrocardiogram signals acquired through a steering wheel could be the key to seamless, highly comfortable, and continuous human recognition in driving settings. This paper focuses on the enhancement of the unprecedented lesser quality of such signals, through the combination of Savitzky-Golay and moving average filters, followed by outlier detection and removal based on normalised cross-correlation and clustering, which was able to render ensemble heartbeats of significantly higher quality. Discrete Cosine Transform (DCT) and Haar transform features were extracted and fed to decision methods based on Support Vector Machines (SVM), k-Nearest Neighbours (kNN), Multilayer Perceptrons (MLP), and Gaussian Mixture Models – Universal Background Models (GMM-UBM) classifiers, for both identification and authentication tasks. Additional techniques of user-tuned authentication and past score weighting were also studied. The method’s performance was comparable to some of the best recent state-of-the-art methods (94.9% identification rate (IDR) and 2.66% authentication equal error rate (EER)), despite lesser results with scarce train data (70.9% IDR and 11.8% EER). It was concluded that the method was suitable for biometric recognition with driving electrocardiogram signals, and could, with future developments, be used on a continuous system in seamless and highly noisy settings.info:eu-repo/semantics/publishedVersio

    Physical reservoir computing with dynamical electronics

    Get PDF
    Since the advent of data-driven society, mass information generated from human activity and the natural environment has been collected, stored, processed, and then dispersed under conventional von Neumann architecture. However, further scaling the computing capability in terms of speed and power efficiency has been significantly slowed down in recent years due to the fundamental limits of transistors. To meet the increasingly demanding requirement for data-intensive computation, neuromorphic computing is a promising field taking the inspiration from the human brain, an extremely efficient biological computer, to develop unconventional computing paradigms for artificial intelligence. Reservoir computing, a recurrent neural network algorithm invented two decades ago, has received wide attention in the field of neuromorphic computing because of its unique recurrent dynamics and hardware-friendly implementation schemes. Under the concept of reservoir computing, hardware’s intrinsic physical behaviours can be explored as computing resources to keep the machine learning within the physical domain to improve processing efficiency, which is also known as physical reservoir computing. This thesis focuses on modelling and implementing physical reservoir computing based on dynamical electronics, along with its applications with sensory signals. First, the fundamental of the reservoir computing algorithm is introduced. Second, based on the reservoir algorithm and its functionalities, two different architectures for physically implementing reservoir computing, delay-based reservoir and parallel devices, are investigated to perform temporal signal processing. Thirdly, an efficient implementation architecture, namely rotating neurons reservoir, is developed. This novel architecture is evaluated in both theoretical analysis and experiments. An electrical prototype of the rotating neurons reservoir exhibits unique advantages such as resource-efficient implementation and low power consumption. More importantly, the theory of rotating neurons reservoir is highly universal, indicating that a rotational object embedded with dynamical elements can act as a reservoir computer
    • …
    corecore