117 research outputs found

    Image-Guided Robot-Assisted Techniques with Applications in Minimally Invasive Therapy and Cell Biology

    Get PDF
    There are several situations where tasks can be performed better robotically rather than manually. Among these are situations (a) where high accuracy and robustness are required, (b) where difficult or hazardous working conditions exist, and (c) where very large or very small motions or forces are involved. Recent advances in technology have resulted in smaller size robots with higher accuracy and reliability. As a result, robotics is fi nding more and more applications in Biomedical Engineering. Medical Robotics and Cell Micro-Manipulation are two of these applications involving interaction with delicate living organs at very di fferent scales.Availability of a wide range of imaging modalities from ultrasound and X-ray fluoroscopy to high magni cation optical microscopes, makes it possible to use imaging as a powerful means to guide and control robot manipulators. This thesis includes three parts focusing on three applications of Image-Guided Robotics in biomedical engineering, including: Vascular Catheterization: a robotic system was developed to insert a catheter through the vasculature and guide it to a desired point via visual servoing. The system provides shared control with the operator to perform a task semi-automatically or through master-slave control. The system provides control of a catheter tip with high accuracy while reducing X-ray exposure to the clinicians and providing a more ergonomic situation for the cardiologists. Cardiac Catheterization: a master-slave robotic system was developed to perform accurate control of a steerable catheter to touch and ablate faulty regions on the inner walls of a beating heart in order to treat arrhythmia. The system facilitates touching and making contact with a target point in a beating heart chamber through master-slave control with coordinated visual feedback. Live Neuron Micro-Manipulation: a microscope image-guided robotic system was developed to provide shared control over multiple micro-manipulators to touch cell membranes in order to perform patch clamp electrophysiology. Image-guided robot-assisted techniques with master-slave control were implemented for each case to provide shared control between a human operator and a robot. The results show increased accuracy and reduced operation time in all three cases

    Design, Optimization, and Experimental Characterization of a Novel Magnetically Actuated Finger Micromanipulator

    Get PDF
    The ability of external magnetic fields to precisely control micromanipulator systems has received a great deal of attention from researchers in recent years due to its off-board power source. As these micromanipulators provide frictionless motion, and precise motion control, they have promising potential applications in many fields. Conversely, major drawbacks of electromagnetic micromanipulators, include a limited motion range compared to the micromanipulator volume, the inability to handle heavy payloads, and the need for a large drive unit compared to the size of the levitated object, and finally, a low ratio of the generated magnetic force to the micromanipulator weight. To overcome these limitations, we designed a novel electromagnetic finger micromanipulator that was adapted from the well-known spherical robot. The design and optimization procedures for building a three Degree of Freedoms (DOF) electromagnetic finger micromanipulator are firstly introduced. This finger micromanipulator has many potential applications, such as cell manipulation, and pick and place operations. The system consists of two main subsystems: a magnetic actuator, and an electromagnetic end-effector that is connected to the magnetic actuator by a needle. The magnetic actuator consists of four permanent magnets and four electromagnetic coils that work together to guide the micromanipulator finger in the xz plane. The electromagnetic end-effector consists of a rod shape permanent magnet that is aligned along the y axis and surrounded by an electromagnetic coil. The optimal configuration that maximizes the micromanipulator actuation force, and a closed form solution for micromanipulator magnetic actuation force are presented. The model is verified by measuring the interaction force between an electromagnet and a permanent magnet experimentally, and using Finite Element Methods (FEM) analysis. The results show an agreement between the model, the experiment, and the FEM results. The error difference between the FEM, experimental, and model data was 0.05 N. The micromanipulator can be remotely operated by transferring magnetic energy from outside, which means there is no mechanical contact between the actuator and the micromanipulator. Moreover, three control algorithms are designed in order to compute control input currents that are able to control the position of the end-effector in the x, y, and z axes. The proposed controllers are: PID controller, state-feedback controller, and adaptive controller. The experimental results show that the micromanipulator is able to track the desired trajectory with a steady-state error less than 10 µm for a payload free condition. Finally, the ability of the micromanipulator to pick-and-place unknown payloads is demonstrated. To achieve this objective, a robust model reference adaptive controller (MRAC) using the MIT rule for an adaptive mechanism to guide the micromanipulator in the workspace is implemented. The performance of the MRAC is compared with a standard PID controller and state-feedback controller. For the payload free condition, the experimental results show the ability of the micromanipulator to follow a desired motion trajectory in all control strategies with a root mean square error less than 0.2 mm. However, while there is payload variation, the PID controller response yields a non smooth motion with a large overshoot and undershoot. Similarly, the state-feedback controller suffers from variability of dynamics and disturbances due to the payload variation, which yields to non-smooth motion and large overshoot. The micromanipulator motion under the MRAC control scheme conversely follows the desired motion trajectory with the same accuracy. It is found that the micromanipulator can handle payloads up to 75 grams and it has a motion range of ∓ 15 mm in all axes

    Design and Fabrication of Electrothermal Micromotors and Compliant Mechanisms for Spatial Parallel Micromanipulators

    Get PDF
    In this dissertation a new class of spatial micromechanisms employing compliant joints and electrothermal motors has been developed. The spatial micromechanisms contain three limbs driven by individual electrothermal linear motors to form multiple degree-of-freedom (DOF) manipulators. At the coaxial point of the actuated limbs, a platform acts as the end effector of the device. Each limb in this spatial mechanism interconnects compliant pseudo-revolute joints, which are capable of providing either in-plane or out-of-plane rotations. Mechanisms are demonstrated using polysilicon surface micromachining, and a new four-layer UV-LIGA fabrication process is also presented for future production of high aspect ratio spatial micromechanisms. Linear motors are developed to provide bi-directional continuous motions to drive the spatial mechanism. Individual electrothermal actuators within a linear motor employ saw-toothed impactors to provide a synchronized locking/pushing motion without needing a secondary clamping actuator. These saw-toothed linear motors provide a platform for accurate open-loop position control, continuously smooth motion, high motion resolution, and long life operation. Electrothermal V-beam actuators using multiple arrayed beams have been shown to provide large output forces up to several mN, sufficient for the spatial micromechanisms developed in this work. Taking advantage of a modeling approach based on the pseudo-rigid-body model, a new force and displacement model for the electrothermal V-beam actuators is developed and shown to provide good agreement with experimental results. The optimization design for the thermal actuators is also discussed to reduce actuation power. Pseudo-rigid-body modeling is used to simplify the designed compliant spatial mechanisms, allowing the well-known rigid body method to replace the cumbersome matrix method for compliant mechanism analysis. Based on the pseudo-rigid-body model, inverse kinematics is used to find the workspace of a typical microscale mechanism, together with the required movement for each linear motor to allow the end effector to reach a desired position. Dynamic analysis of the mechanism is applied to determine the maximum required forces for each actuator. The manipulator workspace volume defined by maximum link lengths and joint rotation angles is determined by using the Monte Carlo method. A systematic design procedure is finally proposed to enable effective compliant micromanipulator designs

    Improving Gold/Gold Microcontact Performance and Reliability Under Low-Frequency AC Through Circuit Loading

    Get PDF
    This paper investigates the performance and reliability of microcontacts under low-frequency and low-amplitude ac test conditions. Current microcontact theory is based on dc tests adapted to RF applications. To help better apply dc theory to RF applications, frequencies between 100 Hz to 100 kHz were experimentally investigated. Microcontacts designed to conduct performance and reliability measurements were used, which in prior dc testing typically lasted for 100 million cycles or more. Under ac loads, at similar power levels, eight devices were tested under cold-switching conditions, and only one was still operational at 10 million cycles. The effect of external circuitry on dc loaded devices was also considered. The experimental data were presented for dc conditions, which demonstrated that both a parallel capacitance with a microcontact and a series inductance were highly detrimental. For all six tested devices, failure occurred typically in 100 thousand cycles or less. However, utilizing series resistive/capacitive circuits as well as parallel resistor/inductive resulted in improved performance, with only one device of the four tested failing prematurely, but those that lasted showed less variation in measure contact resistance throughout the lifetime of the device. Two devices were tested with passive contact protection using parallel and series resistances, and both devices lasted for the full test duration. Finally, the effects of applying circuit protection to microcontacts and repeating ac test conditions were investigated. Reliability and device lifetime were extended significantly (9.1% success rate without protection was increased to 87% success rate). It was also observed in several instances that devices that failed showed subtle signs of variance during contact closure measurements in the range of 5-30 μ N, indicating a possible means for accurately predicting device failure. For these failed devices, notable physical damage was observed using a scanning electron microscope

    Integration of shape memory alloy for microactuation

    Get PDF
    Shape memory alloy (SMA) actuators in microelectromechanical system (MEMS) have a broad range of applications. The alloy material has unique properties underlying its high working density, simple structures, large displacement and excellent biocompatibility. These features have led to its commercialization in several applications such as micro-robotics and biomedical areas. However, full utilization of SMA is yet to be exploited as it faces various practical issues. In the area of microactuators in particular, fabricated devices suffer from low degrees of freedom (DoF), complex fabrication processes, larger sizes and limited displacement range. This thesis presents novel techniques of developing bulk-micromachined SMA microdevices by applying integration of multiple SMA microactuators, and monolithic methods using standard and unconventional MEMS fabrication processes. The thermomechanical behavior of the developed bimorph SMA microactuator is analyzed by studying the parameters such as thickness of SMA sheet, type and thickness of stress layer and the deposition temperature that affect the displacement. The microactuators are then integrated to form a novel SMA micromanipulator that consists of two links and a gripper at its end to provide three-DoF manipulation of small objects with overall actuation x- and y- axes displacement of 7.1 mm and 5.2 mm, respectively. To simplify the fabrication and improve the structure robustness, a monolithic approach was utilized in the development of a micro-positioning stage using bulk-micromachined SMA sheet that was fabricated in a single machining step. The design consisted of six spring actuators that provided large stage displacement range of 1.2 mm and 1.6 mm in x- and y-axes, respectively, and a rotation of 20° around the z-axis. To embed a self-sensing functionality in SMA microactuators, a novel wireless displacement sensing method based on integration of an SMA spiral-coil actuator in a resonant circuit is developed. These devices have the potential to promote the application of bulk-micromachined SMA actuator in MEMS area

    Static force capabilities and dynamic capabilities of parallel mechanisms equipped with safety clutches

    Get PDF
    Cette thèse étudie les forces potentielles des mécanismes parallèles plans à deux degrés de liberté équipés d'embrayages de sécurité (limiteur de couple). Les forces potentielles sont étudiées sur la base des matrices jacobienne. La force maximale qui peut être appliquée à l'effecteur en fonction des limiteurs de couple ainsi que la force maximale isotrope sont déterminées. Le rapport entre ces deux forces est appelé l'efficacité de la force et peut être considéré ; comme un indice de performance. Enfin, les résultats numériques proposés donnent un aperçu sur la conception de robots coopératifs reposant sur des architectures parallèles. En isolant chaque lien, les modèles dynamiques approximatifs sont obtenus à partir de l'approche Newton-Euler et des équations de Lagrange pour du tripteron et du quadrupteron. La plage de l'accélération de l'effecteur et de la force externe autorisée peut être trouvée pour une plage donnée de forces d'actionnement.This thesis investigates the force capabilities of two-degree-of-freedom planar parallel mechanisms that are equipped with safety clutches (torque limiters). The force capabilities are studied based on the Jacobian matrices. The maximum force that can be applied at the end-effector for given torque limits (safety index) is determined together with the maximum isotropic force that can be produced. The ratio between these two forces, referred to as the force effectiveness, can be considered as a performance index. Finally, some numerical results are proposed which can provide insight into the design of cooperation robots based on parallel architectures. Considering each link and slider system as a single body, approximate dynamic models are derived based on the Newton-Euler approach and Lagrange equations for the tripteron and the quadrupteron. The acceleration range or the external force range of the end-effector are determined and given as a safety consideration with the dynamic models

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Vision Based Automatic Calibration of Microrobotic System

    Get PDF
    During the last decade, the advancement of microrobotics has provided a powerful tool for micromanipulation in various fields including living cell manipulation, MEMS/MOEMS assembly, and micro-/nanoscale material characterization. Several dexterous micromanipulation systems have been developed and demonstrated. Nowadays, the research on micromanipulation has shifted the scope from the conceptual system development to the industrial applications. Consequently, the future development of this field lies on the industrial applicability of systems that aims to convert the micromanipulation technique to the mass manufacturing process. In order to achieve this goal, the automatic microrobotic system, as the core in the process chain, plays a significant role. This thesis focuses on the calibration procedure of the positioning control, which is one of the fundamental issues during the automatic microrobotic system development. A novel vision based procedure for three dimensional (3D) calibrations of micromanipulators is proposed. Two major issues in the proposed calibration approach - vision system calibration and manipulator kinematic calibration - are investigated in details in this thesis. For the stereo vision measurement system, the calibration principle and algorithm are presented. Additionally, the manipulator kinematic calibration is carried out in four steps: kinematic modeling, data acquisition, parameter estimation, and compensation implementation. The procedures are presented with two typical models: the matrix model and the polynomial model. Finally, verification and evaluation experiments are conducted on the microrobotic fiber characterization platform in the Micro- and Nano Systems Research Group (MST) at Tampere University of Technology. The results demonstrate that the proposed calibration models are able to reduce the prediction error below 2.59 micrometers. With those models, the pose error, compensated by the feed-forward compensator, can be reduced to be smaller than 5 µm. The proposed approach also demonstrates the feasibility in calibrating the decoupled motions, by reducing the undesired movement from 28 µm to 8 µm (For 4800 µm desired movement)
    corecore