668 research outputs found

    Active Vision for Scene Understanding

    Get PDF
    Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot\u27s view in order to explore interaction possibilities of the scene

    Model-Based Environmental Visual Perception for Humanoid Robots

    Get PDF
    The visual perception of a robot should answer two fundamental questions: What? and Where? In order to properly and efficiently reply to these questions, it is essential to establish a bidirectional coupling between the external stimuli and the internal representations. This coupling links the physical world with the inner abstraction models by sensor transformation, recognition, matching and optimization algorithms. The objective of this PhD is to establish this sensor-model coupling

    Active Vision for Scene Understanding

    Get PDF
    Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot's view in order to explore interaction possibilities of the scene

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    MonoSLAM: Real-time single camera SLAM

    No full text
    Published versio

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Vision-Guided Robot Hearing

    Get PDF
    International audienceNatural human-robot interaction (HRI) in complex and unpredictable environments is important with many potential applicatons. While vision-based HRI has been thoroughly investigated, robot hearing and audio-based HRI are emerging research topics in robotics. In typical real-world scenarios, humans are at some distance from the robot and hence the sensory (microphone) data are strongly impaired by background noise, reverberations and competing auditory sources. In this context, the detection and localization of speakers plays a key role that enables several tasks, such as improving the signal-to-noise ratio for speech recognition, speaker recognition, speaker tracking, etc. In this paper we address the problem of how to detect and localize people that are both seen and heard. We introduce a hybrid deterministic/probabilistic model. The deterministic component allows us to map 3D visual data onto an 1D auditory space. The probabilistic component of the model enables the visual features to guide the grouping of the auditory features in order to form audiovisual (AV) objects. The proposed model and the associated algorithms are implemented in real-time (17 FPS) using a stereoscopic camera pair and two microphones embedded into the head of the humanoid robot NAO. We perform experiments with (i)~synthetic data, (ii)~publicly available data gathered with an audiovisual robotic head, and (iii)~data acquired using the NAO robot. The results validate the approach and are an encouragement to investigate how vision and hearing could be further combined for robust HRI

    Autonomous navigation for guide following in crowded indoor environments

    No full text
    The requirements for assisted living are rapidly changing as the number of elderly patients over the age of 60 continues to increase. This rise places a high level of stress on nurse practitioners who must care for more patients than they are capable. As this trend is expected to continue, new technology will be required to help care for patients. Mobile robots present an opportunity to help alleviate the stress on nurse practitioners by monitoring and performing remedial tasks for elderly patients. In order to produce mobile robots with the ability to perform these tasks, however, many challenges must be overcome. The hospital environment requires a high level of safety to prevent patient injury. Any facility that uses mobile robots, therefore, must be able to ensure that no harm will come to patients whilst in a care environment. This requires the robot to build a high level of understanding about the environment and the people with close proximity to the robot. Hitherto, most mobile robots have used vision-based sensors or 2D laser range finders. 3D time-of-flight sensors have recently been introduced and provide dense 3D point clouds of the environment at real-time frame rates. This provides mobile robots with previously unavailable dense information in real-time. I investigate the use of time-of-flight cameras for mobile robot navigation in crowded environments in this thesis. A unified framework to allow the robot to follow a guide through an indoor environment safely and efficiently is presented. Each component of the framework is analyzed in detail, with real-world scenarios illustrating its practical use. Time-of-flight cameras are relatively new sensors and, therefore, have inherent problems that must be overcome to receive consistent and accurate data. I propose a novel and practical probabilistic framework to overcome many of the inherent problems in this thesis. The framework fuses multiple depth maps with color information forming a reliable and consistent view of the world. In order for the robot to interact with the environment, contextual information is required. To this end, I propose a region-growing segmentation algorithm to group points based on surface characteristics, surface normal and surface curvature. The segmentation process creates a distinct set of surfaces, however, only a limited amount of contextual information is available to allow for interaction. Therefore, a novel classifier is proposed using spherical harmonics to differentiate people from all other objects. The added ability to identify people allows the robot to find potential candidates to follow. However, for safe navigation, the robot must continuously track all visible objects to obtain positional and velocity information. A multi-object tracking system is investigated to track visible objects reliably using multiple cues, shape and color. The tracking system allows the robot to react to the dynamic nature of people by building an estimate of the motion flow. This flow provides the robot with the necessary information to determine where and at what speeds it is safe to drive. In addition, a novel search strategy is proposed to allow the robot to recover a guide who has left the field-of-view. To achieve this, a search map is constructed with areas of the environment ranked according to how likely they are to reveal the guide’s true location. Then, the robot can approach the most likely search area to recover the guide. Finally, all components presented are joined to follow a guide through an indoor environment. The results achieved demonstrate the efficacy of the proposed components
    • …
    corecore