730 research outputs found

    Modulation and Control Techniques for Performance Improvement of Micro Grid Tie Inverters

    Get PDF
    The concept of microgrids is a new building block of smart grid that acts as a single controllable entity which allows reliable interconnection of distributed energy resources and loads and provides alternative way of their integration into power system. Due to its specifics, microgrids require different control strategies and dynamics of regulation as compared to ones used in conventional utility grids. All types of power converters used in microgrid share commonalities which potentially affect high frequency modes of microgrid in same manner. There are numerous unique design requirements imposed on microgrid tie inverters, which are dictated by the nature of the microgrid system and bring major challenges that are reviewed and further analyzed in this work. This work introduces, performs a detailed study on, and implements nonconventional control and modulation techniques leading to performance improvement of microgrid tie inverters in respect to aforementioned challenges

    Multi-Sampled Current Control of Grid-Connected Voltage Source Converters

    Get PDF

    Stability Analysis and Performance Optimization for the Multi-Parallel Grid inverters System

    Get PDF

    Conducted EMI Mitigation in Power Converters using Active EMI Filters

    Get PDF
    Wide bandgap devices enable high power density power converters. Despite the advantages of increased switching frequency, the passive components are still a major bottleneck towards enabling high power density. Among the passive components in the converter, the passive EMI filters are unavoidable to ensure compliance with conducted EMI standards. Active EMI filters help reduce the volume of the passive components and have been around for three decades now. Firstly, this work presents a summary of all the different active EMI filters based on the type of noise-sensing, noise-processing, the type of active circuits used and the type of control methods. This is followed by modeling, design and stability analysis of three different active EMI filters for DM noise attenuation. The first active EMI filter is a conventional active EMI filter. The key bottlenecks to improving performance of the conventional active EMI filter are identified while still achieving volume reduction of passive components. Following this two novel active EMI filters are presented that overcome the bottlenecks of conventional active EMI filter. The second active EMI filter is based on a analog twin-circuit. This novel filter uses a twin-circuit which enables the use of low-voltage surface-mount components for compensation. The third active EMI filter uses zero-phase filtering implemented in an FPGA. While all the filters are demonstrated for differential-mode noise, their use can be extended for common-mode noise attenuation

    Reduction of Current Harmonic Distortion in Three-Phase Grid-Connected Photovoltaic Inverters via Resonant Current Control

    Get PDF
    The resonant current control has been extensively employed to reduce the current harmonic distortion in a wide range of grid-connected distributed generation applications, including photovoltaic (PV) inverters, wind and water turbines, and fuel-cell inverters. However, the performance of these systems is deteriorated when the utility grid voltage experiences abnormal conditions such as voltage harmonics and imbalances. Several advanced control solutions have been recently introduced to cope with this problem but at the cost of a significant increase in the control computational load. This paper first analyzes the limitations of the standard resonant current control operating under abnormal grid conditions and then introduces a control scheme that improves the current harmonic distortion in such adverse conditions without increasing the computational load of the standard current control. This theoretical contribution is validated by means of selected experimental results from a three-phase PV inverterPostprint (published version

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Flexible operation of grid-interfacing converters in distribution networks : bottom-up solutions to voltage quality enhancement

    Get PDF
    Due to the emerging application of distributed generation (DG), large numbers of DG systems are expected to deliver electricity into the distribution network in the near future. For the most part these systems are not ready for riding through grid disturbances and cannot mitigate unwanted influences on the grid. On the one hand, with the increasing use of sensitive and critical equipment by customers, the electricity network is required to serve high voltage quality. On the other hand, more and more unbalanced and nonlinear equipment, including DG units, is negatively affecting the power quality of distribution networks. To adapt to the future distribution network, the tendency for grid-interfacing converters will be to integrate voltage quality enhancement with DG functionality. In this thesis, the flexible operation of grid-interfacing converters in distribution networks is investigated for the purpose of voltage quality enhancement at both the grid and user sides. The research is carried out in a bottom-up fashion, from the low-level power electronics control, through the realization of individual system functionality, finally arriving at system-level concepts and implementation. Being essential to the control of grid-interfacing converters, both stationaryframe techniques for voltage detection and synchronization in disturbed grids, and asymmetrical current regulation are investigated. Firstly, a group of high performance filters for the detection of fundamental symmetrical sequences and harmonics under various grid conditions is proposed. The robustness of the proposed filters to small grid-frequency variation and their adaptability to large frequency change are discussed. Secondly, multiple reference frame current regulation is explored for dealing with unbalanced grid conditions. As a complement to the existing proportional resonant (PR) controllers, sequence-decoupled resonant (SDR) controllers are proposed for regulating individual symmetric sequences. Based on the modeling of a four-leg grid-connected system in different reference frames, three types of controllers, i.e. PI, PR, and proportional plus SDR controllers are compared. Grid-interactive control of distributed power generation, i.e. voltage unbalance compensation, grid-fault ride-through control and flexible power transfer, as well as the modeling of harmonic interaction, are all investigated. The in-depth study and analysis of these grid interactions show the grid-support possibilities and potential negative impact on the grid of inverter-based DG units, beyond their primary goal of power delivery. In order to achieve a co-operative voltage unbalance compensation based on distributed DG systems, two control schemes, namely voltage unbalance factor based control and negative-sequence admittance control, are proposed. The negativesequence voltages at the grid connection point can be compensated and mitigated by regulating the negative-sequence currents flowing between the grid and DG converters. Flexible active and reactive power control during unbalanced voltage dips is proposed that enables DG systems to enhance grid-fault ride-through capability and to adapt to various requirements for grid voltage support. By changing adaptable weighting factors, the compensation of oscillating power and the regulation of grid currents can be easily implemented. Two joint strategies for the simultaneous control of active and reactive power are derived, which maintain the adaptive controllability that can cope with multiple constraints in practical applications. The contribution of zero-sequence currents to active power control is also analyzed as a complement to the proposed control, which is based on positive- and negative-sequence components. Harmonic interaction between DG inverters and the grid is modeled and analyzed with an impedance-based approach. In order to mitigate the harmonic distortion in a polluted grid, it is proposed to specify output impedance limits as a design constraint for DG inverters. Results obtained from modeling, analysis, and simulations of a distribution network with aggregated DG inverters, show that the proposed method is a simple and effective way for estimating harmonic quasi-resonance problems. By integrating these proposed control strategies in a modified conventional series-parallel structure, we arrived at a group of grid-interfacing system topologies that is suitable for DG applications, voltage quality improvement, and flexible power transfer. A concrete laboratory system details the proposed concepts and specifies the practical problems related to control design. The introduction of multi-level control objectives illustrates that the proposed system can ride through voltage disturbances, can enhance the grid locally, and can continue the power transfer to and from the grid while high voltage quality is maintained for the local loads within the system module. A dual-converter laboratory set-up was built, with which the proposed concepts and practical implementation have been fully demonstrated

    Modeling and stability analysis of LCL-type grid-connected inverters:A comprehensive overview

    Get PDF
    corecore