5,929 research outputs found

    Sensor fault detection with low computational cost : a proposed neural network-based control scheme

    Get PDF
    The paper describes a low computational power method for detecting sensor faults. A typical fault detection unit for multiple sensor fault detection with modelbased approaches, requires a bank of estimators. The estimators can be either observer or artificial intelligence based. The proposed control scheme uses an artificial intelligence approach for the development of the fault detection unit abbreviated as ‘i-FD’. In contrast with the bank-estimators approach the proposed i-FD unit is using only one estimator for multiple sensor fault detection. The efficacy of the scheme is tested on an Electro-Magnetic Suspension (EMS) system and compared with a bank of Kalman estimators in simulation environment

    Autonomous power expert system

    Get PDF
    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning

    Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain

    Get PDF
    © 2016 Juan Jose Saucedo-Dorantes et al. Gearboxes and induction motors are important components in industrial applications and their monitoring condition is critical in the industrial sector so as to reduce costs and maintenance downtimes. There are several techniques associated with the fault diagnosis in rotating machinery; however, vibration and stator currents analysis are commonly used due to their proven reliability. Indeed, vibration and current analysis provide fault condition information by means of the fault-related spectral component identification. This work presents a methodology based on vibration and current analysis for the diagnosis of wear in a gearbox and the detection of bearing defect in an induction motor both linked to the same kinematic chain; besides, the location of the fault-related components for analysis is supported by the corresponding theoretical models. The theoretical models are based on calculation of characteristic gearbox and bearings fault frequencies, in order to locate the spectral components of the faults. In this work, the influence of vibrations over the system is observed by performing motor current signal analysis to detect the presence of faults. The obtained results show the feasibility of detecting multiple faults in a kinematic chain, making the proposed methodology suitable to be used in the application of industrial machinery diagnosis.Postprint (published version

    Wind turbine condition assessment through power curve copula modeling

    Get PDF
    Power curves constructed from wind speed and active power output measurements provide an established method of analyzing wind turbine performance. In this paper it is proposed that operational data from wind turbines are used to estimate bivariate probability distribution functions representing the power curve of existing turbines so that deviations from expected behavior can be detected. Owing to the complex form of dependency between active power and wind speed, which no classical parameterized distribution can approximate, the application of empirical copulas is proposed; the statistical theory of copulas allows the distribution form of marginal distributions of wind speed and power to be expressed separately from information about the dependency between them. Copula analysis is discussed in terms of its likely usefulness in wind turbine condition monitoring, particularly in early recognition of incipient faults such as blade degradation, yaw and pitch errors

    Componential coding in the condition monitoring of electrical machines Part 2: application to a conventional machine and a novel machine

    Get PDF
    This paper (Part 2) presents the practical application of componential coding, the principles of which were described in the accompanying Part 1 paper. Four major issues are addressed, including optimization of the neural network, assessment of the anomaly detection results, development of diagnostic approaches (based on the reconstruction error) and also benchmarking of componential coding with other techniques (including waveform measures, Fourier-based signal reconstruction and principal component analysis). This is achieved by applying componential coding to the data monitored from both a conventional induction motor and from a novel transverse flux motor. The results reveal that machine condition monitoring using componential coding is not only capable of detecting and then diagnosing anomalies but it also outperforms other conventional techniques in that it is able to separate very small and localized anomalies

    Robust fault tolerant control framework using uncertain Takagi-Sugeno fuzzy models

    Get PDF
    This chapter is concerned with the introduction of a fault tolerant control (FTC) framework using uncertain Takagi-Sugeno (FS) fuzzy models. Depending on how much information is available about the fault, the framework gives rise to passive FTC, active FTC without controller reconfiguration and active FTC with controller reconfiguration. The design is performed using a Linear Matrix Inequality (LMI)-based synthesis that directly takes into account the TS description of the system and its uncertainties. An example based on a mobile robot is used to show the application of this methodologyPeer ReviewedPreprin

    Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform

    Get PDF
    Publisher Copyright: © 2023 by the authors.This article deals with fault detection and the classification of incipient and intermittent open-transistor faults in grid-connected three-level T-type inverters. Normally, open-transistor detection algorithms are developed for permanent faults. Nevertheless, the difficulty to detect incipient and intermittent faults is much greater, and appropriate methods are required. This requirement is due to the fact that over time, its repetition may lead to permanent failures that may lead to irreversible degradation. Therefore, the early detection of these failures is very important to ensure the reliability of the system and avoid unscheduled stops. For diagnosing these incipient and intermittent faults, a novel method based on a Walsh transform combined with a multilayer perceptron (MLP)-based classifier is proposed in this paper. This non-classical approach of using the Walsh transform not only allows accurate detections but is also very fast. This last characteristic is very important in these applications due to their practical implementation. The proposed method includes two main steps. First, the acquired AC currents are used by the control system and processed using the Walsh transform. This results in detailed information used to potentially identify open-transistor faults. Then, such information is processed using the MLP to finally determine whether a fault is present or not. Several experiments are conducted with different types of incipient transistor faults to create a relevant dataset.publishersversionpublishe
    corecore