303 research outputs found

    An Achievable Region for the Double Unicast Problem Based on a Minimum Cut Analysis

    Get PDF
    We consider the multiple unicast problem under network coding over directed acyclic networks when there are two source-terminal pairs, s1 - t1 and s2 - t2. Current characterizations of the multiple unicast capacity region in this setting have a large number of inequalities, which makes them hard to explicitly evaluate. In this work we consider a slightly different problem. We assume that we only know certain minimum cut values for the network, e.g., mincut(Si, Tj), where Si ⊆ {si, s2} and Tj ⊆ {t1, t2} for different subsets Si and Tj. Based on these values, we propose an achievable rate region for this problem based on linear codes. Towards this end, we begin by defining a base region where both sources are multicast to both the terminals. Following this we enlarge the region by appropriately encoding the information at the source nodes, such that terminal ti is only guaranteed to decode information from the intended source si, while decoding a linear function of the other source. The rate region takes different forms depending upon the relationship of the different cut values in the network

    An Achievable Region for the Double Unicast Problem Based on a Minimum Cut Analysis

    Full text link

    Linear Network Coding for Two-Unicast-ZZ Networks: A Commutative Algebraic Perspective and Fundamental Limits

    Full text link
    We consider a two-unicast-ZZ network over a directed acyclic graph of unit capacitated edges; the two-unicast-ZZ network is a special case of two-unicast networks where one of the destinations has apriori side information of the unwanted (interfering) message. In this paper, we settle open questions on the limits of network coding for two-unicast-ZZ networks by showing that the generalized network sharing bound is not tight, vector linear codes outperform scalar linear codes, and non-linear codes outperform linear codes in general. We also develop a commutative algebraic approach to deriving linear network coding achievability results, and demonstrate our approach by providing an alternate proof to the previous results of C. Wang et. al., I. Wang et. al. and Shenvi et. al. regarding feasibility of rate (1,1)(1,1) in the network.Comment: A short version of this paper is published in the Proceedings of The IEEE International Symposium on Information Theory (ISIT), June 201

    Alignment based Network Coding for Two-Unicast-Z Networks

    Full text link
    In this paper, we study the wireline two-unicast-Z communication network over directed acyclic graphs. The two-unicast-Z network is a two-unicast network where the destination intending to decode the second message has apriori side information of the first message. We make three contributions in this paper: 1. We describe a new linear network coding algorithm for two-unicast-Z networks over directed acyclic graphs. Our approach includes the idea of interference alignment as one of its key ingredients. For graphs of a bounded degree, our algorithm has linear complexity in terms of the number of vertices, and polynomial complexity in terms of the number of edges. 2. We prove that our algorithm achieves the rate-pair (1, 1) whenever it is feasible in the network. Our proof serves as an alternative, albeit restricted to two-unicast-Z networks over directed acyclic graphs, to an earlier result of Wang et al. which studied necessary and sufficient conditions for feasibility of the rate pair (1, 1) in two-unicast networks. 3. We provide a new proof of the classical max-flow min-cut theorem for directed acyclic graphs.Comment: The paper is an extended version of our earlier paper at ITW 201

    On the multiple unicast capacity of 3-source, 3-terminal directed acyclic networks

    Get PDF
    We consider the multiple unicast problem with three source-terminal pairs over directed acyclic networks with unit-capacity edges. The three sitis_i-t_i pairs wish to communicate at unit-rate via network coding. The connectivity between the sitis_i - t_i pairs is quantified by means of a connectivity level vector, [k1k2k3][k_1 k_2 k_3] such that there exist kik_i edge-disjoint paths between sis_i and tit_i. In this work we attempt to classify networks based on the connectivity level. It can be observed that unit-rate transmission can be supported by routing if ki3k_i \geq 3, for all i=1,,3i = 1, \dots, 3. In this work, we consider, connectivity level vectors such that mini=1,,3ki<3\min_{i = 1, \dots, 3} k_i < 3. We present either a constructive linear network coding scheme or an instance of a network that cannot support the desired unit-rate requirement, for all such connectivity level vectors except the vector [1 2 4][1~2~4] (and its permutations). The benefits of our schemes extend to networks with higher and potentially different edge capacities. Specifically, our experimental results indicate that for networks where the different source-terminal paths have a significant overlap, our constructive unit-rate schemes can be packed along with routing to provide higher throughput as compared to a pure routing approach.Comment: To appear in the IEEE/ACM Transactions on Networkin
    corecore