8,299 research outputs found

    An Achievable Rate for the MIMO Individual Channel

    Full text link
    We consider the problem of communicating over a multiple-input multiple-output (MIMO) real valued channel for which no mathematical model is specified, and achievable rates are given as a function of the channel input and output sequences known a-posteriori. This paper extends previous results regarding individual channels by presenting a rate function for the MIMO individual channel, and showing its achievability in a fixed transmission rate communication scenario.Comment: to be presented at ITW201

    Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network

    Full text link
    The limited fronthaul capacity imposes a challenge on the uplink of centralized radio access network (C-RAN). We propose to boost the fronthaul capacity of massive multiple-input multiple-output (MIMO) aided C-RAN by globally optimizing the power sharing between channel estimation and data transmission both for the user devices (UDs) and the remote radio units (RRUs). Intuitively, allocating more power to the channel estimation will result in more accurate channel estimates, which increases the achievable throughput. However, increasing the power allocated to the pilot training will reduce the power assigned to data transmission, which reduces the achievable throughput. In order to optimize the powers allocated to the pilot training and to the data transmission of both the UDs and the RRUs, we assign an individual power sharing factor to each of them and derive an asymptotic closed-form expression of the signal-to-interference-plus-noise for the massive MIMO aided C-RAN consisting of both the UD-to-RRU links and the RRU-to-baseband unit (BBU) links. We then exploit the C-RAN architecture's central computing and control capability for jointly optimizing the UDs' power sharing factors and the RRUs' power sharing factors aiming for maximizing the fronthaul capacity. Our simulation results show that the fronthaul capacity is significantly boosted by the proposed global optimization of the power allocation between channel estimation and data transmission both for the UDs and for their host RRUs. As a specific example of 32 receive antennas (RAs) deployed by RRU and 128 RAs deployed by BBU, the sum-rate of 10 UDs achieved with the optimal power sharing factors improves 33\% compared with the one attained without optimizing power sharing factors

    Resource Allocation for Multiple-Input and Multiple-Output Interference Networks

    Get PDF
    To meet the exponentially increasing traffic data driven by the rapidly growing mobile subscriptions, both industry and academia are exploring the potential of a new genera- tion (5G) of wireless technologies. An important 5G goal is to achieve high data rate. Small cells with spectrum sharing and multiple-input multiple-output (MIMO) techniques are one of the most promising 5G technologies, since it enables to increase the aggregate data rate by improving the spectral efficiency, nodes density and transmission bandwidth, respectively. However, the increased interference in the densified networks will in return limit the achievable rate performance if not properly managed. The considered setup can be modeled as MIMO interference networks, which can be classified into the K-user MIMO interference channel (IC) and the K-cell MIMO interfering broadcast channel/multiple access channel (MIMO-IBC/IMAC) according to the number of mobile stations (MSs) simultaneously served by each base station (BS). The thesis considers two physical layer (PHY) resource allocation problems that deal with the interference for both models: 1) Pareto boundary computation for the achiev- able rate region in a K-user single-stream MIMO IC and 2) grouping-based interference alignment (GIA) with optimized IA-Cell assignment in a MIMO-IMAC under limited feedback. In each problem, the thesis seeks to provide a deeper understanding of the system and novel mathematical results, along with supporting numerical examples. Some of the main contributions can be summarized as follows. It is an open problem to compute the Pareto boundary of the achievable rate region for a K-user single-stream MIMO IC. The K-user single-stream MIMO IC models multiple transmitter-receiver pairs which operate over the same spectrum simultaneously. Each transmitter and each receiver is equipped with multiple antennas, and a single desired data stream is communicated in each transmitter-receiver link. The individual achievable rates of the K users form a K-dimensional achievable rate region. To find efficient operating points in the achievable rate region, the Pareto boundary computation problem, which can be formulated as a multi-objective optimization problem, needs to be solved. The thesis transforms the multi-objective optimization problem to two single-objective optimization problems–single constraint rate maximization problem and alternating rate profile optimization problem, based on the formulations of the ε-constraint optimization and the weighted Chebyshev optimization, respectively. The thesis proposes two alternating optimization algorithms to solve both single-objective optimization problems. The convergence of both algorithms is guaranteed. Also, a heuristic initialization scheme is provided for each algorithm to achieve a high-quality solution. By varying the weights in each single-objective optimization problem, numerical results show that both algorithms provide an inner bound very close to the Pareto boundary. Furthermore, the thesis also computes some key points exactly on the Pareto boundary in closed-form. A framework for interference alignment (IA) under limited feedback is proposed for a MIMO-IMAC. The MIMO-IMAC well matches the uplink scenario in cellular system, where multiple cells share their spectrum and operate simultaneously. In each cell, a BS receives the desired signals from multiple MSs within its own cell and each BS and each MS is equipped with multi-antenna. By allowing the inter-cell coordination, the thesis develops a distributed IA framework under limited feedback from three aspects: the GIA, the IA-Cell assignment and dynamic feedback bit allocation (DBA), respec- tively. Firstly, the thesis provides a complete study along with some new improvements of the GIA, which enables to compute the exact IA precoders in closed-form, based on local channel state information at the receiver (CSIR). Secondly, the concept of IA-Cell assignment is introduced and its effect on the achievable rate and degrees of freedom (DoF) performance is analyzed. Two distributed matching approaches and one centralized assignment approach are proposed to find a good IA-Cell assignment in three scenrios with different backhaul overhead. Thirdly, under limited feedback, the thesis derives an upper bound of the residual interference to noise ratio (RINR), formulates and solves a corresponding DBA problem. Finally, numerical results show that the proposed GIA with optimized IA-Cell assignment and the DBA greatly outperforms the traditional GIA algorithm

    Cooperative Multi-Cell Block Diagonalization with Per-Base-Station Power Constraints

    Full text link
    Block diagonalization (BD) is a practical linear precoding technique that eliminates the inter-user interference in downlink multiuser multiple-input multiple-output (MIMO) systems. In this paper, we apply BD to the downlink transmission in a cooperative multi-cell MIMO system, where the signals from different base stations (BSs) to all the mobile stations (MSs) are jointly designed with the perfect knowledge of the downlink channels and transmit messages. Specifically, we study the optimal BD precoder design to maximize the weighted sum-rate of all the MSs subject to a set of per-BS power constraints. This design problem is formulated in an auxiliary MIMO broadcast channel (BC) with a set of transmit power constraints corresponding to those for individual BSs in the multi-cell system. By applying convex optimization techniques, this paper develops an efficient algorithm to solve this problem, and derives the closed-form expression for the optimal BD precoding matrix. It is revealed that the optimal BD precoding vectors for each MS in the per-BS power constraint case are in general non-orthogonal, which differs from the conventional orthogonal BD precoder design for the MIMO-BC under one single sum-power constraint. Moreover, for the special case of single-antenna BSs and MSs, the proposed solution reduces to the optimal zero-forcing beamforming (ZF-BF) precoder design for the weighted sum-rate maximization in the multiple-input single-output (MISO) BC with per-antenna power constraints. Suboptimal and low-complexity BD/ZF-BF precoding schemes are also presented, and their achievable rates are compared against those with the optimal schemes.Comment: accepted in JSAC, special issue on cooperative communications on cellular networks, June 201

    Information-theoretic Secrecy in Multi-user Channels

    Get PDF
    Inherent openness of the wireless medium imposes stronger challenges on the security of wireless communications. Information-theoretic security addresses these challenges at the physical layer by using tools from wireless communication theory, signal processing and information theory. In information-theoretic security, physical layer communication is intelligently designed to exploit the characteristics of the wireless medium, such as fading, interference, cooperation, and multi-dimensional signaling, in order to provide or improve security. In this dissertation, we study the security of several fundamental wireless network configurations from an information-theoretic perspective. First, we study the Gaussian multiple-input multiple-output (MIMO) wiretap channel. In this channel, the transmitter sends a common message to both the legitimate user and the eavesdropper. In addition to the common message, a private message is sent only to the legitimate user, which needs to be kept hidden as much as possible from the eavesdropper. We obtain the entire capacity-equivocation region for this channel model. In particular, we show the sufficiency of jointly Gaussian auxiliary random variables and channel input to evaluate the existing single-letter description of the capacity-equivocation region due to Csiszar-Korner. Next, we study the secure broadcasting problem, where a transmitter wants to have secure communication with multiple legitimate users in the presence of an external eavesdropper. We study several special cases of the secure broadcasting problem. First, we consider the degraded multi-receiver wiretap channel, and establish its secrecy capacity region. Second, we consider the parallel less noisy multi-receiver wiretap channel, and obtain its common message secrecy capacity and sum secrecy capacity. Third, we consider the parallel degraded multi-receiver wiretap channel for the two-user and two-sub-channel case, and obtain its entire secrecy capacity region. Finally, we consider a parallel channel model with two sub-channels, where the transmitter can use only one of the subchannels at any time, and characterize its secrecy capacity region. Then, we study the two-user Gaussian MIMO broadcast channel with common and confidential messages. In this channel model, the transmitter sends a common message to both users, and a confidential message to each user which needs to be kept perfectly secret from the other user. We obtain the entire capacity region of this channel. We also explore the connections between this channel model and its non-confidential counterpart, i.e., the Gaussian MIMO broadcast channel with common and private message. Next, we consider the Gaussian MIMO multi-receiver wiretap channel and obtain its secrecy capacity region for the most general case. We first show that even for the single-input single-output (SISO) case, existing converse techniques fall short of proving the secrecy capacity region, to emphasize the need for a new proof technique, which we develop by using the relationships between the Fisher information and the differential entropy. Using this new proof technique, we obtain the secrecy capacity region of the degraded MIMO channel. We then establish the secrecy capacity region of the general MIMO channel by using the channel enhancement technique in conjunction with the capacity result we obtained for the degraded MIMO channel. For the general MIMO channel, we show that dirty-paper coding (DPC) combined with stochastic encoding attains the entire secrecy capacity region. Then, we study the multi-receiver wiretap channel for a more general scenario, where, in addition to confidential messages, the transmitter sends public messages to the legitimate users, on which there are no secrecy constraints. First, we consider the degraded discrete memoryless channel, and obtain inner and outer bounds for the capacity region. These inner and outer bounds match for certain cases, providing the capacity region. Second, we obtain an inner bound for the general discrete memoryless channel by using Marton's inner bound. Third, we consider the degraded Gaussian MIMO channel, and show that jointly Gaussian auxiliary random variables and channel input are sufficient to exhaust the inner and outer bounds. Finally, we provide an inner bound for the capacity region of the general Gaussian MIMO channel. Next, we focus on the multiple access wiretap (MAC-WT) channel whose capacity region is unknown. We consider a special class of MAC-WT channels which we call the weak eavesdropper class, where each user's link to the legitimate receiver is stronger than its link to the eavesdropper. For this class of channels, we develop an outer bound for the secrecy capacity region, which partially matches the achievable region in an n-letter form. We evaluate a looser version of our outer bound for the Gaussian case, and show that our outer bound is within 0.5 bits/channel use of the achievable rates along the individual secrecy rates for all weak eavesdropper Gaussian MAC-WT. Then, we investigate the effects of user cooperation on the secrecy of broadcast channels by considering the cooperative relay broadcast channel (CRBC). We propose an achievable scheme that combines Marton's coding scheme for broadcast channels and Cover and El Gamal's compress-and-forward (CAF) scheme for relay channels. For the Gaussian CRBC, we show that both users can have positive secrecy rates, which is not possible for scalar Gaussian broadcast channels without cooperation. We further investigate the effects of user cooperation on secrecy by considering the multiple access channel with generalized feedback (MAC-GF), which can be viewed as the MAC-dual of the CRBC. We propose a CAF-based achievable secrecy rate region for the MAC-GF. Specializing our results to a Gaussian MAC-GF, we present numerical results which demonstrate that cooperation can improve secrecy for the MAC-GF. Next, we study the two-user one-eavesdropper discrete memoryless compound wiretap channel, and provide the best known lower bound for the secrecy capacity of this compound channel. We evaluate this achievable secrecy rate for the Gaussian MIMO case by using DPC. We show that this achievable secrecy rate achieves at least half of the secrecy capacity of this Gaussian MIMO compound wiretap channel, and also attains the secrecy capacity when the eavesdropper is degraded with respect to one of the two users. Then, we study the degraded compound multi-receiver wiretap channel (DCMRWC), which, in addition to a group of eavesdroppers, has two groups of users, namely the stronger group and the weaker group. We study two different communication scenarios for this channel. In the first scenario, there is only one eavesdropper, and the transmitter sends a confidential message to each group of legitimate users while keeping both messages secret from the eavesdropper. In the second scenario, we study the DCMRWC with layered messages without any restriction on the number of eavesdroppers. For both scenarios, we obtain the secrecy capacity region for the discrete memoryless channel, the parallel channel, and the Gaussian parallel channel. For the Gaussian MIMO channel, we obtain the secrecy capacity region when there is only one user in the second group. Next, we study the two-user fading broadcast channel and obtain its ergodic secrecy capacity region. We show that, thanks to fading, both users can have simultaneous secure communication with the transmitter, although this is not possible in the scalar non-fading Gaussian broadcast channel where only one user can have secure communication. This simultaneous secrecy of both users is achieved by an opportunistic communication scheme, in which, at each time instant, the transmitter communicates with the user having a better channel gain. Then, we study the secure lossy transmission of a vector Gaussian source to a legitimate user in the presence of an eavesdropper, where both the legitimate user and the eavesdropper have vector Gaussian side information. We obtain an outer bound for the rate, equivocation and distortion region. Moreover, we obtain the maximum equivocation at the eavesdropper when there is no constraint on the transmission rate. By using this maximum equivocation result, we show two facts. First, for this problem, in general, Wyner-Ziv scheme is suboptimal, although, it is optimal in the absence of an eavesdropper. And, second, even when there is no transmission rate constraint, an uncoded transmission scheme is suboptimal; the presence of an eavesdropper necessitates the use of a coded scheme to attain the maximum equivocation. Finally, we revisit the secure lossy source coding problem. In all works on this problem, either the equivocation of the source at the eavesdropper or the equivocation of the legitimate user's reconstruction of the source at the eavesdropper is used to measure secrecy. We first propose the relative equivocation of the source at the eavesdropper with respect to the legitimate user as a new secrecy measure. We argue that this new secrecy measure is the one that corresponds to the natural generalization of the equivocation in a wiretap channel to the context of secure lossy source coding. Under this new secrecy measure, we provide a single-letter description of the rate, relative equivocation and distortion region, as well as its specializations to degraded and reversely degraded cases. We investigate the relationships between the optimal scheme that attains this region and the Wyner-Ziv scheme

    Code designs for MIMO broadcast channels

    Get PDF
    Recent information-theoretic results show the optimality of dirty-paper coding (DPC) in achieving the full capacity region of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC). This paper presents a DPC based code design for BCs. We consider the case in which there is an individual rate/signal-to-interference-plus-noise ratio (SINR) constraint for each user. For a fixed transmitter power, we choose the linear transmit precoding matrix such that the SINRs at users are uniformly maximized, thus ensuring the best bit-error rate performance. We start with Cover's simplest two-user Gaussian BC and present a coding scheme that operates 1.44 dB from the boundary of the capacity region at the rate of one bit per real sample (b/s) for each user. We then extend the coding strategy to a two-user MIMO Gaussian BC with two transmit antennas at the base-station and develop the first limit-approaching code design using nested turbo codes for DPC. At the rate of 1 b/s for each user, our design operates 1.48 dB from the capacity region boundary. We also consider the performance of our scheme over a slow fading BC. For two transmit antennas, simulation results indicate a performance loss of only 1.4 dB, 1.64 dB and 1.99 dB from the theoretical limit in terms of the total transmission power for the two, three and four user case, respectively
    corecore