267 research outputs found

    A low-complexity eigenfilter design method for channel shortening equalizers for DMT systems

    Get PDF
    We present a new low-complexity method for the design of channel shortening equalizers for discrete multitone (DMT) modulation systems using the eigenfilter approach. In contrast to other such methods which require a Cholesky decomposition for each delay parameter value used, ours requires only one such decomposition. Simulation results show that our method performs nearly optimally in terms of observed bit rate

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Discrete multitone modulation with principal component filter banks

    Get PDF
    Discrete multitone (DMT) modulation is an attractive method for communication over a nonflat channel with possibly colored noise. The uniform discrete Fourier transform (DFT) filter bank and cosine modulated filter bank have in the past been used in this system because of low complexity. We show in this paper that principal component filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are also optimal for a number of criteria in DMT modulation communication. For example, the PCFB of the effective channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter bank is significant for effective power spectra which depart considerably from monotonicity. The twisted pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good candidate for the application of a PCFB. This is demonstrated with the help of numerical results for the case of the ADSL channel

    Discrete Multitone Modulation for Maximizing Transmission Rate in Step-Index Plastic Optical Fibres

    Get PDF
    The use of standard 1-mm core-diameter step-index plastic optical fiber (SI-POF) has so far been mainly limited to distances of up to 100 m and bit-rates in the order of 100 Mbit/s. By use of digital signal processing, transmission performance of such optical links can be improved. Among the different technical solutions proposed, a promising one is based on the use of discrete multitone (DMT) modulation, directly applied to intensity-modulated, direct detection (IM/DD) SI-POF links. This paper presents an overview of DMT over SI-POF and demonstrates how DMT can be used to improve transmission rate in such IM/DD systems. The achievable capacity of an SI-POF channel is first analyzed theoretically and then validated by experimental results. Additionally, first experimental demonstrations of a real-time DMT over SI-POF system are presented and discusse

    Efficient Channel Shortening Equalizer Design

    Get PDF

    Adaptive Linear Precoded DMT as an Efficient Resource Allocation Scheme for Power-Line Communications

    No full text
    In this paper, we propose to apply adaptive loading principles to linear precoded digital multitone (LP-DMT). This new approach can especially be exploited in the powerline context, since it requires the knowledge of the channel at the transmitter. We first show that maximal waveform capacity is achieved when orthogonal matrices are used to linearly precode the multitone signal. A practical loading algorithm based on tone clustering is then developed to handle the configuration of the system. This algorithm assigns tones, size of precoding matrices, bits and energies in order to maximize the total throughput of the system. The optimization procedure is led under power spectral density (DSP) limitations and finit order modulations constraint. Through simulations over power line channels, it is shown that the new adaptive LP-DMT system takes advantage of the carrier merging effect offered by the precoding function and then outperforms the non-precoded DMT system

    Achievable Rate Region and Path-Based Beamforming for Multi-User Single-Carrier Delay Alignment Modulation

    Full text link
    Delay alignment modulation (DAM) is a novel wideband transmission technique for mmWave massive MIMO systems, which exploits the high spatial resolution and multi-path sparsity to mitigate ISI, without relying on channel equalization or multi-carrier transmission. In particular, DAM leverages the delay pre-compensation and path-based beamforming to effectively align the multi-path components, thus achieving the constructive multi-path combination for eliminating the ISI while preserving the multi-path power gain. Different from the existing works only considering single-user DAM, this paper investigates the DAM technique for multi-user mmWave massive MIMO communication. First, we consider the asymptotic regime when the number of antennas Mt at BS is sufficiently large. It is shown that by employing the simple delay pre-compensation and per-path-based MRT beamforming, the single-carrier DAM is able to perfectly eliminate both ISI and IUI. Next, we consider the general scenario with Mt being finite. In this scenario, we characterize the achievable rate region of the multi-user DAM system by finding its Pareto boundary. Specifically, we formulate a rate-profile-constrained sum rate maximization problem by optimizing the per-path-based beamforming. Furthermore, we present three low-complexity per-path-based beamforming strategies based on the MRT, zero-forcing, and regularized zero-forcing principles, respectively, based on which the achievable sum rates are studied. Finally, we provide simulation results to demonstrate the performance of our proposed strategies as compared to two benchmark schemes based on the strongest-path-based beamforming and the prevalent OFDM, respectively. It is shown that DAM achieves higher spectral efficiency and/or lower peak-to-average-ratio, for systems with high spatial resolution and multi-path diversity.Comment: 13 pages, 5 figure
    • 

    corecore