3,665 research outputs found

    Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: a systematic review

    Get PDF
    Background: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. Methods: Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. Results: More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. Discussion: Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare

    Development of machine learning schemes for use in non-invasive and continuous patient health monitoring

    Get PDF
    Stephanie Baker developed machine learning schemes for the non-invasive and continuous measurement of blood pressure and respiratory rate from heart activity waveforms. She also constructed machine learning models for mortality risk assessment from vital sign variations. This research contributes several tools that offer significant advancements in patient monitoring and wearable healthcare

    Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: a hybrid neural network approach

    Get PDF
    Mortality risk prediction can greatly improve the utilization of resources in intensive care units (ICUs). Existing schemes in ICUs today require laborious manual input of many complex parameters. In this work, we present a scheme that uses variations in vital signs over a 24-h period to make mortality risk assessments for 3-day, 7-day, and 14-day windows. We develop a hybrid neural network model that combines convolutional (CNN) layers with bidirectional long short-term memory (BiLSTM) to predict mortality from statistics describing the variation of heart rate, blood pressure, respiratory rate, blood oxygen levels, and temperature. Our scheme performs strongly compared to state-of-the-art schemes in the literature for mortality prediction, with our highest-performing model achieving an area under the receiver-operator curve of 0.884. We conclude that the use of a hybrid CNN-BiLSTM network is highly effective in determining mortality risk for the 3, 7, and 14 day windows from vital signs. As vital signs are routinely recorded, in many cases automatically, our scheme could be implemented such that highly accurate mortality risk could be predicted continuously and automatically, reducing the burden on healthcare providers and improving patient outcomes

    Computer modeling and signal analysis of cardiovascular physiology

    Get PDF
    This dissertation aims to study cardiovascular physiology from the cellular level to the whole heart level to the body level using numerical approaches. A mathematical model was developed to describe electromechanical interaction in the heart. The model integrates cardio-electrophysiology and cardiac mechanics through excitation-induced contraction and deformation-induced currents. A finite element based parallel simulation scheme was developed to investigate coupled electrical and mechanical functions. The developed model and numerical scheme were utilized to study cardiovascular dynamics at cellular, tissue and organ levels. The influence of ion channel blockade on cardiac alternans was investigated. It was found that the channel blocker may significantly change the critical pacing period corresponding to the onset of alternans as well as the alternans’ amplitude. The influence of electro-mechanical coupling on cardiac alternans was also investigated. The study supported the earlier assumptions that discordant alternans is induced by the interaction of conduction velocity and action potential duration restitution at high pacing rates. However, mechanical contraction may influence the spatial pattern and onset of discordant alternans. Computer algorithms were developed for analysis of human physiology. The 12-lead electrocardiography (ECG) is the gold standard for diagnosis of various cardiac abnormalities. However, disturbances and mistakes may modify physiological waves in ECG and lead to wrong diagnoses. This dissertation developed advanced signal analysis techniques and computer software to detect and suppress artifacts and errors in ECG. These algorithms can help to improve the quality of health care when integrated into medical devices or services. Moreover, computer algorithms were developed to predict patient mortality in intensive care units using various physiological measures. Models and analysis techniques developed here may help to improve the quality of health care

    Machine Learning Methods for Septic Shock Prediction

    Get PDF
    Sepsis is an organ dysfunction life-threatening disease that is caused by a dysregulated body response to infection. Sepsis is difficult to detect at an early stage, and when not detected early, is difficult to treat and results in high mortality rates. Developing improved methods for identifying patients in high risk of suffering septic shock has been the focus of much research in recent years. Building on this body of literature, this dissertation develops an improved method for septic shock prediction. Using the data from the MMIC-III database, an ensemble classifier is trained to identify high-risk patients. A robust prediction model is built by obtaining a risk score from fitting the Cox Hazard model on multiple input features. The score is added to the list of features and the Random Forest ensemble classifier is trained to produce the model. The Cox Enhanced Random Forest (CERF) proposed method is evaluated by comparing its predictive accuracy to those of extant methods
    • …
    corecore