9,944 research outputs found

    An Evaluation of Score Level Fusion Approaches for Fingerprint and Finger-vein Biometrics

    Get PDF
    Biometric systems have to address many requirements, such as large population coverage, demographic diversity, varied deployment environment, as well as practical aspects like performance and spoofing attacks. Traditional unimodal biometric systems do not fully meet the aforementioned requirements making them vulnerable and susceptible to different types of attacks. In response to that, modern biometric systems combine multiple biometric modalities at different fusion levels. The fused score is decisive to classify an unknown user as a genuine or impostor. In this paper, we evaluate combinations of score normalization and fusion techniques using two modalities (fingerprint and finger-vein) with the goal of identifying which one achieves better improvement rate over traditional unimodal biometric systems. The individual scores obtained from finger-veins and fingerprints are combined at score level using three score normalization techniques (min-max, z-score, hyperbolic tangent) and four score fusion approaches (minimum score, maximum score, simple sum, user weighting). The experimental results proved that the combination of hyperbolic tangent score normalization technique with the simple sum fusion approach achieve the best improvement rate of 99.98%.Comment: 10 pages, 5 figures, 3 tables, conference, NISK 201

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    CardioCam: Leveraging Camera on Mobile Devices to Verify Users While Their Heart is Pumping

    Get PDF
    With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over 99% average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%

    Finger vein verification algorithm based on fully convolutional neural network and conditional random field

    Get PDF
    Owing to the complexity of finger vein patterns in shape and spatial dependence, the existing methods suffer from an inability to obtain accurate and stable finger vein features. This paper, so as to compensate this defect, proposes an end-to-end model to extract vein textures through integrating the fully convolutional neural network (FCN) with conditional random field (CRF). Firstly, to reduce missing pixels during ROI extraction, the method of sliding window summation is employed to filter and adjusted with self-built tools. In addition, the traditional baselines are endowed with different weights to automatically assign labels. Secondly, the deformable convolution network, through replacing the plain counterparts in the standard U-Net mode, can capture the complex venous structural features by adaptively adjusting the receptive fields according to veins' scales and shapes. Moreover, the above features can be further mined and accumulated by combining the recurrent neural network (RNN) and the residual network (ResNet). With the steps mentioned above, the fully convolutional neural network is constructed. Finally, the CRF with Gaussian pairwise potential conducts mean-field approximate inference as the RNN, and then is embedded as a part of the FCN, so that the model can fully integrate CRF with FCNs, which provides the possibility to involve the usual back-propagation algorithm in training the whole deep network end-to-end. The proposed models in this paper were tested on three public finger vein datasets SDUMLA, MMCBNU and HKPU with experimental results to certify their superior performance on finger-vein verification tasks compared with other equivalent models including U-Net
    • …
    corecore