412 research outputs found

    TIMETABLE MANAGEMENT TECHNIQUE IN RAILWAY CAPACITY ANALYSIS: DEVELOPMENT OF THE HYBRID OPTIMIZATION OF TRAIN SCHEDULES (HOTS) MODEL

    Get PDF
    There are two general approaches to improve the capacity in a rail corridor, either by applying new capital infrastructure investment or by improving the operation of the rail services. Techniques to evaluate the railway operation include modeling and optimization through the use of commercial timetable management and rail simulation tools. However, only a few of the existing tools include complete features of timetable management techniques (e.g. timetable compression) are equipped with an optimization model for rescheduling and timetable improvement and this is especially true when it comes to the U.S. rail environment that prevalently uses unstructured operation practices. This dissertation explores an application of timetable (TT) management techniques (e.g. rescheduling and timetable compression techniques) in the U.S. rail environment and their effect on capacity utilization and level of service (LOS) parameters. There are many tools and simulation packages used for capacity analysis, by both European and the U.S. rail industry, but due to the differences in the operating philosophy and network characteristics of these two rail systems, European studies tend to use timetable-based simulation tools (e.g. RailSys, OpenTrack) while the non-timetable based tools (e.g. RTC) are commonly used in the U.S. (Chapter 1). This research study investigated potential benefits of using a “Hybrid Simulation” approach that would combine the advantages of both the U.S. and European tools. Two case studies (a single track and a multiple-track case study) were developed to test the hybrid simulation approach, and it was concluded that applying timetable management techniques (e.g. timetable compression technique) is promising when implemented in a single track corridor (Chapter 2), but it is only applicable for the multiple track corridors under directional operation pattern (Chapter 3). To address this, a new heuristic rescheduling and rerouting technique was developed as part of the research to convert a multiple track case study from non-directional operation pattern to a fully directional operation pattern (Chapter 4). The knowledge and skills of existing software, obtained during the development and testing of “Hybrid Simulation”, was used to develop an analytical rescheduling/optimization model called “Hybrid Optimization of Train Schedules” (HOTS) (Chapter 5). While the results of the “Hybrid simulation approach” are promising, the method was also time consuming and challenging, as all respective details and database of the given corridors had to be replicated in both simulation tools. The “HOTS Model” could provide the same functions and features of train rescheduling, but with much less efforts and challenges as in the hybrid simulation. The HOTS model works in conjunction with any commercial rail simulation software and it can reschedule an initial timetable (with or without conflict) to provide a “Conflict-Free” timetable based on user-defined criteria. The model is applicable to various types of rail operations, including single, double and multiple-track corridors, under both directional and nondirectional operation patterns. The capabilities of the HOTS model were tested for the two case studies developed in the research, and its outcomes were compared to those obtained from the commercial software. It was concluded that the HOTS model performed satisfactorily in each of the test scenarios and the model results either improved or maintained the initial timetable characteristics. The results are promising for the future development of the model, but limitations in the current model structure, such as station capacity limits, should be addressed to improve the potential of applying the model for industrial applications

    Aspekte der Verkehrstelematik – ausgewählte Veröffentlichungen 2015

    Get PDF
    Mit dem sechsten Band der Schriftenreihe Verkehrstelematik wird ein Überblick über die intermodalen Forschungsthemen des Jahres 2015 der Professur für Verkehrsleitsysteme und ‑prozessautomatisierung der Fakultät Verkehrswissenschaften „Friedrich List“ der Technischen Universität Dresden anhand ausgewählter Veröffentlichungen gegeben. Sieben ausgewählte Artikel der Mitarbeiter, hauptsächlich veröffentlicht im Rahmen nationaler und internationaler Konferenzen, wurden dafür zusammengestellt. Die ersten Schwerpunkte bilden dabei die energieoptimale Steuerung und das Verkehrsmanagement im Schienenverkehr. Hier wird der Frage nachgegangen, wie Störungen des Bahnbetriebs im Echtzeit-Betriebsmanagement mit mathematischen Methoden begegnet werden kann. Als ein Ansatzpunkt wird das Erzeugen von robusten, stabilen und dabei auch energieeffizienten Fahrplänen diskutiert. Weiterhin wird versucht, im Rahmen des Betriebsmanagements mittels Konfliktlösungsalgorithmen operativ aktualisierte Fahrpläne so aufzubereiten, dass eine Umsetzung mit fahrzeugseitigen Fahrerassistenzsystemen ermöglicht und ein energieeffizienter Betrieb sichergestellt ist. Im zweiten Teil des Bandes wird gezeigt, wie die Methoden und Algorithmen der energieoptimalen Fahrweise und eines entsprechenden Fahrerassistenzsystems auf die Straßenbahn und auch den Bus übertragen werden können. Anschließend wird gänzlich auf den Individualverkehr fokussiert und der Frage der Reichweitenoptimierung elektrischer Fahrzeuge durch energieeffiziente Routing-Algorithmen unter Berücksichtigung von Echtzeit-Verkehrslagedaten nachgegangen. Wie im Schienenverkehr wird das Finden der optimalen Fahrstrategie auch hier durch Fahrerassistenzsysteme unterstützt

    Proceedings of the 3rd International Conference on Models and Technologies for Intelligent Transportation Systems 2013

    Get PDF
    Challenges arising from an increasing traffic demand, limited resource availability and growing quality expectations of the customers can only be met successfully, if each transport mode is regarded as an intelligent transportation system itself, but also as part of one intelligent transportation system with “intelligent” intramodal and intermodal interfaces. This topic is well reflected in the Third International Conference on “Models and Technologies for Intelligent Transportation Systems” which took place in Dresden 2013 (previous editions: Rome 2009, Leuven 2011). With its variety of traffic management problems that can be solved using similar methods and technologies, but with application specific models, objective functions and constraints the conference stands for an intensive exchange between theory and practice and the presentation of case studies for all transport modes and gives a discussion forum for control engineers, computer scientists, mathematicians and other researchers and practitioners. The present book comprises fifty short papers accepted for presentation at the Third Edition of the conference. All submissions have undergone intensive reviews by the organisers of the special sessions, the members of the scientific and technical advisory committees and further external experts in the field. Like the conference itself the proceedings are structured in twelve streams: the more model-oriented streams of Road-Bound Public Transport Management, Modelling and Control of Urban Traffic Flow, Railway Traffic Management in four different sessions, Air Traffic Management, Water Traffic and Traffic and Transit Assignment, as well as the technology-oriented streams of Floating Car Data, Localisation Technologies for Intelligent Transportation Systems and Image Processing in Transportation. With this broad range of topics this book will be of interest to a number of groups: ITS experts in research and industry, students of transport and control engineering, operations research and computer science. The case studies will also be of interest for transport operators and members of traffic administration

    Railway Transport Planning and Management

    Get PDF
    Railway engineering is facing different and complex challenges due to the growing demand for travel, new technologies, and new mobility paradigms. All these issues require a clear understanding of the existing technologies, and it is crucial to identify the real opportunities that the current technological revolution may pose. As railway transportation planning processes change and pursue a multi-objective vision, diagnostic and maintenance issues are becoming even more crucial for overall system performances and alternative fuel solutions

    Sustainable Mobility and Transport

    Get PDF
    This Special Issue is dedicated to sustainable mobility and transport, with a special focus on technological advancements. Global transport systems are significant sources of air, land, and water emissions. A key motivator for this Special Issue was the diversity and complexity of mitigating transport emissions and industry adaptions towards increasingly stricter regulation. Originally, the Special Issue called for papers devoted to all forms of mobility and transports. The papers published in this Special Issue cover a wide range of topics, aiming to increase understanding of the impacts and effects of mobility and transport in working towards sustainability, where most studies place technological innovations at the heart of the matter. The goal of the Special Issue is to present research that focuses, on the one hand, on the challenges and obstacles on a system-level decision making of clean mobility, and on the other, on indirect effects caused by these changes

    Decision Support for the Rolling Stock Dispatcher

    Get PDF

    Numerical modelling of additive manufacturing process for stainless steel tension testing samples

    Get PDF
    Nowadays additive manufacturing (AM) technologies including 3D printing grow rapidly and they are expected to replace conventional subtractive manufacturing technologies to some extents. During a selective laser melting (SLM) process as one of popular AM technologies for metals, large amount of heats is required to melt metal powders, and this leads to distortions and/or shrinkages of additively manufactured parts. It is useful to predict the 3D printed parts to control unwanted distortions and shrinkages before their 3D printing. This study develops a two-phase numerical modelling and simulation process of AM process for 17-4PH stainless steel and it considers the importance of post-processing and the need for calibration to achieve a high-quality printing at the end. By using this proposed AM modelling and simulation process, optimal process parameters, material properties, and topology can be obtained to ensure a part 3D printed successfully

    Improving the performance of railway track-switching through the introduction of fault tolerance

    Get PDF
    In the future, the performance of the railway system must be improved to accommodate increasing passenger volumes and service quality demands. Track switches are a vital part of the rail infrastructure, enabling traffic to take different routes. All modern switch designs have evolved from a design first patented in 1832. However, switches present single points of failure, require frequent and costly maintenance interventions, and restrict network capacity. Fault tolerance is the practice of preventing subsystem faults propagating to whole-system failures. Existing switches are not considered fault tolerant. This thesis describes the development and potential performance of fault-tolerant railway track switching solutions. The work first presents a requirements definition and evaluation framework which can be used to select candidate designs from a range of novel switching solutions. A candidate design with the potential to exceed the performance of existing designs is selected. This design is then modelled to ascertain its practical feasibility alongside potential reliability, availability, maintainability and capacity performance. The design and construction of a laboratory scale demonstrator of the design is described. The modelling results show that the performance of the fault tolerant design may exceed that of traditional switches. Reliability and availability performance increases significantly, whilst capacity gains are present but more marginal without the associated relaxation of rules regarding junction control. However, the work also identifies significant areas of future work before such an approach could be adopted in practice
    • …
    corecore