930 research outputs found

    A fast semi-direct least squares algorithm for hierarchically block separable matrices

    Full text link
    We present a fast algorithm for linear least squares problems governed by hierarchically block separable (HBS) matrices. Such matrices are generally dense but data-sparse and can describe many important operators including those derived from asymptotically smooth radial kernels that are not too oscillatory. The algorithm is based on a recursive skeletonization procedure that exposes this sparsity and solves the dense least squares problem as a larger, equality-constrained, sparse one. It relies on a sparse QR factorization coupled with iterative weighted least squares methods. In essence, our scheme consists of a direct component, comprised of matrix compression and factorization, followed by an iterative component to enforce certain equality constraints. At most two iterations are typically required for problems that are not too ill-conditioned. For an M×NM \times N HBS matrix with M≥NM \geq N having bounded off-diagonal block rank, the algorithm has optimal O(M+N)\mathcal{O} (M + N) complexity. If the rank increases with the spatial dimension as is common for operators that are singular at the origin, then this becomes O(M+N)\mathcal{O} (M + N) in 1D, O(M+N3/2)\mathcal{O} (M + N^{3/2}) in 2D, and O(M+N2)\mathcal{O} (M + N^{2}) in 3D. We illustrate the performance of the method on both over- and underdetermined systems in a variety of settings, with an emphasis on radial basis function approximation and efficient updating and downdating.Comment: 24 pages, 8 figures, 6 tables; to appear in SIAM J. Matrix Anal. App

    A general class of arbitrary order iterative methods for computing generalized inverses

    Full text link
    [EN] A family of iterative schemes for approximating the inverse and generalized inverse of a complex matrix is designed, having arbitrary order of convergence p. For each p, a class of iterative schemes appears, for which we analyze those elements able to converge with very far initial estimations. This class generalizes many known iterative methods which are obtained for particular values of the parameters. The order of convergence is stated in each case, depending on the first non-zero parameter. For different examples, the accessibility of some schemes, that is, the set of initial estimations leading to convergence, is analyzed in order to select those with wider sets. This wideness is related with the value of the first non-zero value of the parameters defining the method. Later on, some numerical examples (academic and also from signal processing) are provided to confirm the theoretical results and to show the feasibility and effectiveness of the new methods. (C) 2021 The Authors. Published by Elsevier Inc.This research was supported in part by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE) and in part by VIE from Instituto Tecnologico de Costa Rica (Research #1440037)Cordero Barbero, A.; Soto-Quiros, P.; Torregrosa Sánchez, JR. (2021). A general class of arbitrary order iterative methods for computing generalized inverses. Applied Mathematics and Computation. 409:1-18. https://doi.org/10.1016/j.amc.2021.126381S11840

    Numerical iterative methods for nonlinear problems.

    Get PDF
    The primary focus of research in this thesis is to address the construction of iterative methods for nonlinear problems coming from different disciplines. The present manuscript sheds light on the development of iterative schemes for scalar nonlinear equations, for computing the generalized inverse of a matrix, for general classes of systems of nonlinear equations and specific systems of nonlinear equations associated with ordinary and partial differential equations. Our treatment of the considered iterative schemes consists of two parts: in the first called the ’construction part’ we define the solution method; in the second part we establish the proof of local convergence and we derive convergence-order, by using symbolic algebra tools. The quantitative measure in terms of floating-point operations and the quality of the computed solution, when real nonlinear problems are considered, provide the efficiency comparison among the proposed and the existing iterative schemes. In the case of systems of nonlinear equations, the multi-step extensions are formed in such a way that very economical iterative methods are provided, from a computational viewpoint. Especially in the multi-step versions of an iterative method for systems of nonlinear equations, the Jacobians inverses are avoided which make the iterative process computationally very fast. When considering special systems of nonlinear equations associated with ordinary and partial differential equations, we can use higher-order Frechet derivatives thanks to the special type of nonlinearity: from a computational viewpoint such an approach has to be avoided in the case of general systems of nonlinear equations due to the high computational cost. Aside from nonlinear equations, an efficient matrix iteration method is developed and implemented for the calculation of weighted Moore-Penrose inverse. Finally, a variety of nonlinear problems have been numerically tested in order to show the correctness and the computational efficiency of our developed iterative algorithms
    • …
    corecore