1,195 research outputs found

    From Method Fragments to Method Services

    Full text link
    In Method Engineering (ME) science, the key issue is the consideration of information system development methods as fragments. Numerous ME approaches have produced several definitions of method parts. Different in nature, these fragments have nevertheless some common disadvantages: lack of implementation tools, insufficient standardization effort, and so on. On the whole, the observed drawbacks are related to the shortage of usage orientation. We have proceeded to an in-depth analysis of existing method fragments within a comparison framework in order to identify their drawbacks. We suggest overcoming them by an improvement of the ?method service? concept. In this paper, the method service is defined through the service paradigm applied to a specific method fragment ? chunk. A discussion on the possibility to develop a unique representation of method fragment completes our contribution

    An implementation of the behavior annex in the AADL-toolset Osate2

    Get PDF
    AADL is a modeling language to design and analyze High-Integrity Distributed and Real-time systems. Embedded sub-languages published as AADL annexes extend an AADL model to enhance analysis. The behavior annex specifies the behavior of an AADL application model. An implantation of this annex allows to perform behavior analysis. In addition, as there are several AADL annexes, the implementation of generic mechanisms to support each one of them is challenging. The behavior annex is a valid candidate to illustrate these challenges by combining several sub-languages. In this paper we expose our experiment to support the behavior annex in the reference AADL toolset OSATE2. This one, supports the AADL version 2 by providing a front-end and a set of analysis plug-ins to analyze an AADL model

    Metamodeling in EIA/CDIF - Meta-Metamodel and Metamodels

    Get PDF
    This article introduces the EIA/CDIF set of standards for the modeling of information systems and its exchange among computer-aided software tools of different vendors. It lays out the meta-metamodel and the standardized metamodels which are fully depicted in a hierarchical layout and annotated with the unique identifiers of all the standardized modeling concepts. The article also stresses the fact that EIA/CDIF has been used as the baseline in the creation of an international standard, the ISO/CDIF set of models, an ongoing project

    Generating a contract checker for an SLA language

    Get PDF
    SLAng is a language for expressing Service LevelAgreements (SLAs) under development as part of the Europeanproject TAPAS. It is defined using a meta-model, an instance ofthe Meta-Object Facility (MOF) model, in which the relationshipbetween the syntax of the language and its domain of applicationis explicitly represented, and the violation semantics ofthe language defined using Object Constraint Language (OCL)constraints. The concrete syntax of the language is the XMLMeta-data Interchange (XMI) mapping of the syntactic part ofthe meta-model. In this paper we describe how the Java MetadataInterface (JMI) mapping can be applied to the meta-modelof the language to generate interfaces and classes to create andquery SLAs and relevant service monitoring data in memory;and how an OCL interpreter can be applied to check violationconstraints over this data, resulting in the implementation of acontract checker that is highly likely to respect the semantics ofthe language

    Performance analysis of persistence technologies for cloud repositories of models

    Get PDF
    The growing adoption of Model Driven Development (MDD) in companies during last decade arises some model interchange problems. Companies need support to interchange models and reuse parts of them for developing new projects. Traditional tools for model edition and model interchange have different performance issues related to the models storage. There are mainly two styles to organize the persistence of models into repositories: a complex and large model or a large amount of small models. This last approach is common in companies that generate software from models. In this paper, we analyse performance properties of different persistence technologies to store small/medium-scale models, the analysis results should be considered in the design of model repositories in the cloud. With this aim, we have designed and developed a generic architecture to evaluate each persistence technology under similar situations

    A research roadmap towards achieving scalability in model driven engineering

    Get PDF
    International audienceAs Model-Driven Engineering (MDE) is increasingly applied to larger and more complex systems, the current generation of modelling and model management technologies are being pushed to their limits in terms of capacity and eciency. Additional research and development is imperative in order to enable MDE to remain relevant with industrial practice and to continue delivering its widely recognised productivity , quality, and maintainability benefits. Achieving scalabil-ity in modelling and MDE involves being able to construct large models and domain-specific languages in a systematic manner, enabling teams of modellers to construct and refine large models in a collaborative manner, advancing the state of the art in model querying and transformations tools so that they can cope with large models (of the scale of millions of model elements), and providing an infrastructure for ecient storage, indexing and retrieval of large models. This paper attempts to provide a research roadmap for these aspects of scalability in MDE and outline directions for work in this emerging research area

    An extensible benchmark and tooling for comparing reverse engineering approaches

    Get PDF
    Various tools exist to reverse engineer software source code and generate design information, such as UML projections. Each has specific strengths and weaknesses, however no standardised benchmark exists that can be used to evaluate and compare their performance and effectiveness in a systematic manner. To facilitate such comparison in this paper we introduce the Reverse Engineering to Design Benchmark (RED-BM), which consists of a comprehensive set of Java-based targets for reverse engineering and a formal set of performance measures with which tools and approaches can be analysed and ranked. When used to evaluate 12 industry standard tools performance figures range from 8.82\% to 100\% demonstrating the ability of the benchmark to differentiate between tools. To aid the comparison, analysis and further use of reverse engineering XMI output we have developed a parser which can interpret the XMI output format of the most commonly used reverse engineering applications, and is used in a number of tools

    Kevoree Modeling Framework (KMF): Efficient modeling techniques for runtime use

    Get PDF
    The creation of Domain Specific Languages(DSL) counts as one of the main goals in the field of Model-Driven Software Engineering (MDSE). The main purpose of these DSLs is to facilitate the manipulation of domain specific concepts, by providing developers with specific tools for their domain of expertise. A natural approach to create DSLs is to reuse existing modeling standards and tools. In this area, the Eclipse Modeling Framework (EMF) has rapidly become the defacto standard in the MDSE for building Domain Specific Languages (DSL) and tools based on generative techniques. However, the use of EMF generated tools in domains like Internet of Things (IoT), Cloud Computing or Models@Runtime reaches several limitations. In this paper, we identify several properties the generated tools must comply with to be usable in other domains than desktop-based software systems. We then challenge EMF on these properties and describe our approach to overcome the limitations. Our approach, implemented in the Kevoree Modeling Framework (KMF), is finally evaluated according to the identified properties and compared to EMF.Comment: ISBN 978-2-87971-131-7; N° TR-SnT-2014-11 (2014

    XRound : A reversible template language and its application in model-based security analysis

    Get PDF
    Successful analysis of the models used in Model-Driven Development requires the ability to synthesise the results of analysis and automatically integrate these results with the models themselves. This paper presents a reversible template language called XRound which supports round-trip transformations between models and the logic used to encode system properties. A template processor that supports the language is described, and the use of the template language is illustrated by its application in an analysis workbench, designed to support analysis of security properties of UML and MOF-based models. As a result of using reversible templates, it is possible to seamlessly and automatically integrate the results of a security analysis with a model. (C) 2008 Elsevier B.V. All rights reserved
    corecore