736 research outputs found

    On shuffle products, acyclic automata and piecewise-testable languages

    Full text link
    We show that the shuffle L \unicode{x29E2} F of a piecewise-testable language LL and a finite language FF is piecewise-testable. The proof relies on a classic but little-used automata-theoretic characterization of piecewise-testable languages. We also discuss some mild generalizations of the main result, and provide bounds on the piecewise complexity of L \unicode{x29E2} F

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d≥2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Separability by Short Subsequences and Subwords

    Get PDF
    The separability problem for regular languages asks, given two regular languages I and E, whether there exists a language S that separates the two, that is, includes I but contains nothing from E. Typically, S comes from a simple, less expressive class of languages than I and E. In general, a simple separator SS can be seen as an approximation of I or as an explanation of how I and E are different. In a database context, separators can be used for explaining the result of regular path queries or for finding explanations for the difference between paths in a graph database, that is, how paths from given nodes u_1 to v_1 are different from those from u_2 to v_2. We study the complexity of separability of regular languages by combinations of subsequences or subwords of a given length k. The rationale is that the parameter k can be used to influence the size and simplicity of the separator. The emphasis of our study is on tracing the tractability of the problem

    Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages

    Get PDF
    The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level Σ1\Sigma_1 of the dot-depth hierarchy are decidable in NLNL (previously only the decidability was known). The same remains true if predicates mod dd for fixed dd are allowed. - If modular predicates for arbitrary dd are allowed, then the classes of the Boolean hierarchy over level Σ1\Sigma_1 are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level Σ2\Sigma_2 of the Straubing-Th\'erien hierarchy are decidable in NLNL. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NLNL. - The membership problems for quasi-aperiodic languages and for dd-quasi-aperiodic languages are logspace many-one complete for PSPACEPSPACE
    • …
    corecore