226 research outputs found

    Achievable secrecy enchancement through joint encryption and privacy amplification

    Get PDF
    In this dissertation we try to achieve secrecy enhancement in communications by resorting to both cryptographic and information theoretic secrecy tools and metrics. Our objective is to unify tools and measures from cryptography community with techniques and metrics from information theory community that are utilized to provide privacy and confidentiality in communication systems. For this purpose we adopt encryption techniques accompanied with privacy amplification tools in order to achieve secrecy goals that are determined based on information theoretic and cryptographic metrics. Every secrecy scheme relies on a certain advantage for legitimate users over adversaries viewed as an asymmetry in the system to deliver the required security for data transmission. In all of the proposed schemes in this dissertation, we resort to either inherently existing asymmetry in the system or proactively created advantage for legitimate users over a passive eavesdropper to further enhance secrecy of the communications. This advantage is manipulated by means of privacy amplification and encryption tools to achieve secrecy goals for the system evaluated based on information theoretic and cryptographic metrics. In our first work discussed in Chapter 2 and the third work explained in Chapter 4, we rely on a proactively established advantage for legitimate users based on eavesdropper’s lack of knowledge about a shared source of data. Unlike these works that assume an errorfree physical channel, in the second work discussed in Chapter 3 correlated erasure wiretap channel model is considered. This work relies on a passive and internally existing advantage for legitimate users that is built upon statistical and partial independence of eavesdropper’s channel errors from the errors in the main channel. We arrive at this secrecy advantage for legitimate users by exploitation of an authenticated but insecure feedback channel. From the perspective of the utilized tools, the first work discussed in Chapter 2 considers a specific scenario where secrecy enhancement of a particular block cipher called Data Encryption standard (DES) operating in cipher feedback mode (CFB) is studied. This secrecy enhancement is achieved by means of deliberate noise injection and wiretap channel encoding as a technique for privacy amplification against a resource constrained eavesdropper. Compared to the first work, the third work considers a more general framework in terms of both metrics and secrecy tools. This work studies secrecy enhancement of a general cipher based on universal hashing as a privacy amplification technique against an unbounded adversary. In this work, we have achieved the goal of exponential secrecy where information leakage to adversary, that is assessed in terms of mutual information as an information theoretic measure and Eve’s distinguishability as a cryptographic metric, decays at an exponential rate. In the second work generally encrypted data frames are transmitted through Automatic Repeat reQuest (ARQ) protocol to generate a common random source between legitimate users that later on is transformed into information theoretically secure keys for encryption by means of privacy amplification based on universal hashing. Towards the end, future works as an extension of the accomplished research in this dissertation are outlined. Proofs of major theorems and lemmas are presented in the Appendix

    Distributed secrecy for information theoretic sensor network models

    Get PDF
    This dissertation presents a novel problem inspired by the characteristics of sensor networks. The basic setup through-out the dissertation is that a set of sensor nodes encipher their data without collaboration and without any prior shared secret materials. The challenge is dealt by an eavesdropper who intercepts a subset of the enciphered data and wishes to gain knowledge of the uncoded data. This problem is challenging and novel given that the eavesdropper is assumed to know everything, including secret cryptographic keys used by both the encoders and decoders. We study the above problem using information theoretic models as a necessary first step towards an understanding of the characteristics of this system problem. This dissertation contains four parts. The first part deals with noiseless channels, and the goal is for sensor nodes to both source code and encipher their data. We derive inner and outer regions of the capacity region (i.e the set of all source coding and equivocation rates) for this problem under general distortion constraints. The main conclusion in this part is that unconditional secrecy is unachievable unless the distortion is maximal, rendering the data useless. In the second part we thus provide a practical coding scheme based on distributed source coding using syndromes (DISCUS) that provides secrecy beyond the equivocation measure, i.e. secrecy on each symbol in the message. The third part deals with discrete memoryless channels, and the goal is for sensor nodes to both channel code and encipher their data. We derive inner and outer regions to the secrecy capacity region, i.e. the set of all channel coding rates that achieve (weak) unconditional secrecy. The main conclusion in this part is that interference allows (weak) unconditional secrecy to be achieved in contrast with the first part of this dissertation. The fourth part deals with wireless channels with fading and additive Gaussian noise. We derive a general outer region and an inner region based on an equal SNR assumption, and show that the two are partially tight when the maximum available user powers are admissible

    Continuous variable private quantum channel

    Full text link
    In this paper we introduce the concept of quantum private channel within the continuous variables framework (CVPQC) and investigate its properties. In terms of CVPQC we naturally define a "maximally" mixed state in phase space together with its explicit construction and show that for increasing number of encryption operations (which sets the length of a shared key between Alice and Bob) the encrypted state is arbitrarily close to the maximally mixed state in the sense of the Hilbert-Schmidt distance. We bring the exact solution for the distance dependence and give also a rough estimate of the necessary number of bits of the shared secret key (i.e. how much classical resources are needed for an approximate encryption of a generally unknown continuous-variable state). The definition of the CVPQC is analyzed from the Holevo bound point of view which determines an upper bound of information about an incoming state an eavesdropper is able to get from his optimal measurement.Comment: upper bound on information Eve can get was revised and substantially lowered (chapter IV), part of chapter III rewritten, several typos correcte

    Ein analytisches Framework zur Bewertung der Zuverlässigkeit und Security von fortschrittlichen Netzwerk Systemen

    Get PDF
    Today, anonymous networks such as The Onion Routing (Tor) have been designed to ensure anonymity, privacy and censorship prevention, which have become major concerns in modern society. Although the Tor network provides layered encryption and traffic tunneling against eavesdropping attacks, the jamming attacks and their impact on the network and network services can not be efficiently handled today. Moreover, to defy modern censorship, it is not enough just to use the Tor network to hide the client's identity and the message content as the censorship has become a type of jamming attack, which prevents users from connecting to the censored network nodes by blocking or jamming (Tor) traffic. In network security, the main tools to protect privacy and anonymity as well as integrity and service reliability against eavesdropping and jamming, respectively, are diversity, randomness, coding or encryption and over-provisioning, all less exploit in traditional networks. This thesis provides radical new network concepts to address the needs of traditional networks for privacy, anonymity, integrity, and reliability; and designs \emph{advanced network systems} based on parallel transmission, random routing, erasure coding and redundant configurations as tools to offer diversity, randomness, coding and over-provisioning. Since the network systems designed in this thesis can not be evaluated with existing analytical models due to their rather complex configurations, the main focus of this work is a development of novel analytical approaches for evaluation of network performance, reliability and security of these systems and to show their practicality. The provided analysis is based on combinatorics, probability and information theory. In contrast to current reliability models, the analysis in this thesis takes into account the sharing of network components, heterogeneity of software and hardware, and interdependence between failed components. The significant property of the new security analysis proposed is the ability to assess the level of privacy, anonymity, integrity and censorship success when multiple jamming and eavesdropping adversaries reside in the network.Derzeit werden anonyme Internet Kommunikationssysteme, wie The Onion Routing (Tor), verwendet, um die Anonymität, die Privatsphäre und die Zensurfreiheit der Internetnutzer zu schützen. Obwohl das Tor-Netzwerk einen Schutz vor Lauschangriffe (Eavesdropping) bietet, kann ein beabsichtigtes Stören (Jamming) der Übertragung und den daraus resultierenden Auswirkungen auf die Netzwerkfunktionen derzeit nicht effektiv abgewehrt werden. Auch das moderne Zensurverfahren im Internet stellt eine Art des Jammings dar. Deswegen kann das Tor Netzwerk zwar die Identität der Tor-Nutzer und die Inhalte ihrer Nachrichten geheim halten, die Internetzensur kann dadurch nicht verhindert werden. Um die Netzwerksicherheit und insbesondere Anonymität, Privatsphäre und Integrität zusammen mit der Verfügbar.- und Zuverlässigkeit von Netzwerkservices zu gewährleisten, sind Diversität, Zufallsprinzip, Codierung (auch Verschlüsselung) und eine Überversorgung, die in den konventionellen Netzwerksystemen eher sparsam angewendet werden, die wichtigsten Mittel gegen Security-Angriffe. Diese Arbeit befasst sich mit grundlegend neuen Konzepten für Kommunikationsnetze, die einen Schutz der Anonymität und der Privatsphäre im Internet bei gleichzeitiger Sicherstellung von Integrität, Verfügbarkeit und Zuverlässigkeit ermöglichen. Die dabei verwendeten Konzepte sind die parallele Datenübertragung, das Random Routing, das Erasure Coding und redundante Systemkonfigurationen. Damit sollen Diversität, Zufallsprinzip, Codierung und eine Überversorgung gewährleistet werden. Da die entwickelten Übertragungssysteme komplexe Strukturen und Konfigurationen aufweisen, können existierende analytische Modelle nicht für eine fundierte Bewertung angewendet werden. Daher ist der Schwerpunkt dieser Arbeit neue analytische Verfahren für eine Bewertung von unterschiedlichen Netzwerkleistungsparametern, Zuverlässigkeit und Security zu entwickeln und die Praxistauglichkeit der in der Arbeit aufgeführten neuen Übertragungskonzepte zu beurteilen. Im Gegensatz zu existierenden Zuverlässigkeitsmodellen berücksichtigt der analytische Ansatz dieser Arbeit die Vielfalt von beteiligten Netzwerkkomponenten, deren komplexe Zusammenhänge und Abhängigkeiten im Fall eines Ausfalls

    Universal homophonic coding

    Get PDF
    Redundancy in plaintext is a fertile source of attack in any encryption system. Compression before encryption reduces the redundancy in the plaintext, but this does not make a cipher more secure. The cipher text is still susceptible to known-plaintext and chosen-plaintext attacks. The aim of homophonic coding is to convert a plaintext source into a random sequence by randomly mapping each source symbol into one of a set of homophones. Each homophone is then encoded by a source coder after which it can be encrypted with a cryptographic system. The security of homophonic coding falls into the class of unconditionally secure ciphers. The main advantage of homophonic coding over pure source coding is that it provides security both against known-plaintext and chosen-plaintext attacks, whereas source coding merely protects against a ciphertext-only attack. The aim of this dissertation is to investigate the implementation of an adaptive homophonic coder based on an arithmetic coder. This type of homophonic coding is termed universal, as it is not dependent on the source statistics.Computer ScienceM.Sc. (Computer Science

    Design and Analysis of Security Schemes for Low-cost RFID Systems

    Get PDF
    With the remarkable progress in microelectronics and low-power semiconductor technologies, Radio Frequency IDentification technology (RFID) has moved from obscurity into mainstream applications, which essentially provides an indispensable foundation to realize ubiquitous computing and machine perception. However, the catching and exclusive characteristics of RFID systems introduce growing security and privacy concerns. To address these issues are particularly challenging for low-cost RFID systems, where tags are extremely constrained in resources, power and cost. The primary reasons are: (1) the security requirements of low-cost RFID systems are even more rigorous due to large operation range and mass deployment; and (2) the passive tags' modest capabilities and the necessity to keep their prices low present a novel problem that goes beyond the well-studied problems of traditional cryptography. This thesis presents our research results on the design and the analysis of security schemes for low-cost RFID systems. Motivated by the recent attention on exploiting physical layer resources in the design of security schemes, we investigate how to solve the eavesdropping, modification and one particular type of relay attacks toward the tag-to-reader communication in passive RFID systems without requiring lightweight ciphers. To this end, we propose a novel physical layer scheme, called Backscatter modulation- and Uncoordinated frequency hopping-assisted Physical Layer Enhancement (BUPLE). The idea behind it is to use the amplitude of the carrier to transmit messages as normal, while to utilize its periodically varied frequency to hide the transmission from the eavesdropper/relayer and to exploit a random sequence modulated to the carrier's phase to defeat malicious modifications. We further improve its eavesdropping resistance through the coding in the physical layer, since BUPLE ensures that the tag-to-eavesdropper channel is strictly noisier than the tag-to-reader channel. Three practical Wiretap Channel Codes (WCCs) for passive tags are then proposed: two of them are constructed from linear error correcting codes, and the other one is constructed from a resilient vector Boolean function. The security and usability of BUPLE in conjunction with WCCs are further confirmed by our proof-of-concept implementation and testing. Eavesdropping the communication between a legitimate reader and a victim tag to obtain raw data is a basic tool for the adversary. However, given the fundamentality of eavesdropping attacks, there are limited prior work investigating its intension and extension for passive RFID systems. To this end, we firstly identified a brand-new attack, working at physical layer, against backscattered RFID communications, called unidirectional active eavesdropping, which defeats the customary impression that eavesdropping is a ``passive" attack. To launch this attack, the adversary transmits an un-modulated carrier (called blank carrier) at a certain frequency while a valid reader and a tag interacts at another frequency channel. Once the tag modulates the amplitude of reader's signal, it causes fluctuations on the blank carrier as well. By carefully examining the amplitude of the backscattered versions of the blank carrier and the reader's carrier, the adversary could intercept the ongoing reader-tag communication with either significantly lower bit error rate or from a significantly greater distance away. Our concept is demonstrated and empirically analyzed towards a popular low-cost RFID system, i.e., EPC Gen2. Although active eavesdropping in general is not trivial to be prohibited, for a particular type of active eavesdropper, namely a greedy proactive eavesdropper, we propose a simple countermeasure without introducing extra cost to current RFID systems. The needs of cryptographic primitives on constraint devices keep increasing with the growing pervasiveness of these devices. One recent design of the lightweight block cipher is Hummingbird-2. We study its cryptographic strength under a novel technique we developed, called Differential Sequence Attack (DSA), and present the first cryptanalytic result on this cipher. In particular, our full attack can be divided into two phases: preparation phase and key recovery phase. During the key recovery phase, we exploit the fact that the differential sequence for the last round of Hummingbird-2 can be retrieved by querying the full cipher, due to which, the search space of the secret key can be significantly reduced. Thus, by attacking the encryption (decryption resp.) of Hummingbird-2, our algorithm recovers 36-bit (another 28-bit resp.) out of 128-bit key with 2682^{68} (2602^{60} resp.) time complexity if particular differential conditions of the internal states and of the keys at one round can be imposed. Additionally, the rest 64-bit of the key can be exhaustively searched and the overall time complexity is dominated by 2682^{68}. During the preparation phase, by investing 2812^{81} effort in time, the adversary is able to create the differential conditions required in the key recovery phase with at least 0.5 probability. As an additional effort, we examine the cryptanalytic strength of another lightweight candidate known as A2U2, which is the most lightweight cryptographic primitive proposed so far for low-cost tags. Our chosen-plaintext-attack fully breaks this cipher by recovering its secret key with only querying the encryption twice on the victim tag and solving 32 sparse systems of linear equations (where each system has 56 unknowns and around 28 unknowns can be directly obtained without computation) in the worst case, which takes around 0.16 second on a Thinkpad T410 laptop

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    • …
    corecore