868 research outputs found

    A novel channel-adaptive uplink access control protocol for nomadic computing

    Get PDF
    We consider the uplink access control problem in a mobile nomadic computing system, which is based on a cellular phone network in that a user can use the mobile device to transmit voice or file data. This resource management problem is important because an efficient solution to uplink access control is critical for supporting a large user population with a reasonable level of quality of service (QoS). While there are a number of recently proposed protocols for uplink access control, these protocols possess a common drawback in that they do not adapt well to the burst error properties, which are inevitable in using wireless communication channels. In this paper, we propose a novel TDMA-based uplink access protocol, which employs a channel state dependent allocation strategy. Our protocol is motivated by two observations: 1) when channel state is bad, the throughput is low due to the large amount of FEC (forward error correction) or excessive ARQ (automatic repeated request) that is needed and 2) because of item 1, much of the mobile device's energy is wasted. The proposed protocol works closely with the underlying physical layer in that, through observing the channel state information (CSI) of each mobile device, the MAC protocol first segregates a set of users with good CSI from requests gathered in the request contention phase of an uplink frame. The protocol then judiciously allocates channel bandwidth to contending users based on their channel conditions. Simulation results indicate that the proposed protocol considerably outperforms five state-of-the-art protocols in terms of packet loss, delay, and throughput.published_or_final_versio

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Formulation, implementation considerations, and first performance evaluation of algorithmic solutions - D4.1

    Get PDF
    Deliverable D4.1 del projecte Europeu OneFIT (ICT-2009-257385)This deliverable contains a first version of the algorithmic solutions for enabling opportunistic networks. The presented algorithms cover the full range of identified management tasks: suitability, creation, QoS control, reconfiguration and forced terminations. Preliminary evaluations complement the proposed algorithms. Implementation considerations towards the practicality of the considered algorithms are also included.Preprin

    Mobility-aware Software-Defined Service-Centric Networking for Service Provisioning in Urban Environments

    Get PDF
    Disruptive applications for mobile devices, such as the Internet of Things, Connected and Autonomous Vehicles, Immersive Media, and others, have requirements that the current Cloud Computing paradigm cannot meet. These unmet requirements bring the necessity to deploy geographically distributed computing architectures, such as Fog and Mobile Edge Computing. However, bringing computing close to users has its costs. One example of cost is the complexity introduced by the management of the mobility of the devices at the edge. This mobility may lead to issues, such as interruption of the communication with service instances hosted at the edge or an increase in communication latency during mobility events, e.g., handover. These issues, caused by the lack of mobility-aware service management solutions, result in degradation in service provisioning. The present thesis proposes a series of protocols and algorithms to handle user and service mobility at the edge of the network. User mobility is characterized when user change access points of wireless networks, while service mobility happens when services have to be provisioned from different hosts. It assembles them in a solution for mobility-aware service orchestration based on Information-Centric Networking (ICN) and runs on top of Software-Defined Networking (SDN). This solution addresses three issues related to handling user mobility at the edge: (i) proactive support for user mobility events, (ii) service instance addressing management, and (iii) distributed application state data management. For (i), we propose a proactive SDN-based handover scheme. For (ii), we propose an ICN addressing strategy to remove the necessity of updating addresses after service mobility events. For (iii), we propose a graph-based framework for state data placement in the network nodes that accounts for user mobility and latency requirements. The protocols and algorithms proposed in this thesis were compared with different approaches from the literature through simulation. Our results show that the proposed solution can reduce service interruption and latency in the presence of user and service mobility events while maintaining reasonable overhead costs regarding control messages sent in the network by the SDN controller

    Elastic Highly Available Cloud Computing

    Get PDF
    High availability and elasticity are two the cloud computing services technical features. Elasticity is a key feature of cloud computing where provisioning of resources is closely tied to the runtime demand. High availability assure that cloud applications are resilient to failures. Existing cloud solutions focus on providing both features at the level of the virtual resource through virtual machines by managing their restart, addition, and removal as needed. These existing solutions map applications to a specific design, which is not suitable for many applications especially virtualized telecommunication applications that are required to meet carrier grade standards. Carrier grade applications typically rely on the underlying platform to manage their availability by monitoring heartbeats, executing recoveries, and attempting repairs to bring the system back to normal. Migrating such applications to the cloud can be particularly challenging, especially if the elasticity policies target the application only, without considering the underlying platform contributing to its high availability (HA). In this thesis, a Network Function Virtualization (NFV) framework is introduced; the challenges and requirements of its use in mobile networks are discussed. In particular, an architecture for NFV framework entities in the virtual environment is proposed. In order to reduce signaling traffic congestion and achieve better performance, a criterion to bundle multiple functions of virtualized evolved packet-core in a single physical device or a group of adjacent devices is proposed. The analysis shows that the proposed grouping can reduce the network control traffic by 70 percent. Moreover, a comprehensive framework for the elasticity of highly available applications that considers the elastic deployment of the platform and the HA placement of the application’s components is proposed. The approach is applied to an internet protocol multimedia subsystem (IMS) application and demonstrate how, within a matter of seconds, the IMS application can be scaled up while maintaining its HA status
    • 

    corecore