171 research outputs found

    Automated Semiconductor Defect Inspection in Scanning Electron Microscope Images: a Systematic Review

    Full text link
    A growing need exists for efficient and accurate methods for detecting defects in semiconductor materials and devices. These defects can have a detrimental impact on the efficiency of the manufacturing process, because they cause critical failures and wafer-yield limitations. As nodes and patterns get smaller, even high-resolution imaging techniques such as Scanning Electron Microscopy (SEM) produce noisy images due to operating close to sensitivity levels and due to varying physical properties of different underlayers or resist materials. This inherent noise is one of the main challenges for defect inspection. One promising approach is the use of machine learning algorithms, which can be trained to accurately classify and locate defects in semiconductor samples. Recently, convolutional neural networks have proved to be particularly useful in this regard. This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images, including the most recent innovations and developments. 38 publications were selected on this topic, indexed in IEEE Xplore and SPIE databases. For each of these, the application, methodology, dataset, results, limitations and future work were summarized. A comprehensive overview and analysis of their methods is provided. Finally, promising avenues for future work in the field of SEM-based defect inspection are suggested.Comment: 16 pages, 12 figures, 3 table

    YOLOv8 for Defect Inspection of Hexagonal Directed Self-Assembly Patterns: A Data-Centric Approach

    Full text link
    Shrinking pattern dimensions leads to an increased variety of defect types in semiconductor devices. This has spurred innovation in patterning approaches such as Directed self-assembly (DSA) for which no traditional, automatic defect inspection software exists. Machine Learning-based SEM image analysis has become an increasingly popular research topic for defect inspection with supervised ML models often showing the best performance. However, little research has been done on obtaining a dataset with high-quality labels for these supervised models. In this work, we propose a method for obtaining coherent and complete labels for a dataset of hexagonal contact hole DSA patterns while requiring minimal quality control effort from a DSA expert. We show that YOLOv8, a state-of-the-art neural network, achieves defect detection precisions of more than 0.9 mAP on our final dataset which best reflects DSA expert defect labeling expectations. We discuss the strengths and limitations of our proposed labeling approach and suggest directions for future work in data-centric ML-based defect inspection.Comment: 8 pages, 10 figures, accepted for the 38th EMLC Conference 202

    Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    A review of data mining applications in semiconductor manufacturing

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI).For decades, industrial companies have been collecting and storing high amounts of data with the aim of better controlling and managing their processes. However, this vast amount of information and hidden knowledge implicit in all of this data could be utilized more efficiently. With the help of data mining techniques unknown relationships can be systematically discovered. The production of semiconductors is a highly complex process, which entails several subprocesses that employ a diverse array of equipment. The size of the semiconductors signifies a high number of units can be produced, which require huge amounts of data in order to be able to control and improve the semiconductor manufacturing process. Therefore, in this paper a structured review is made through a sample of 137 papers of the published articles in the scientific community regarding data mining applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data mining applications are classified in function of the application area. The results are then analyzed and conclusions are drawn.publishersversionpublishe

    Clustering the dominant defective patterns in semiconductor wafer maps

    Get PDF
    Identifying defect patterns on wafers is crucial for understanding the root causes and for attributing such patterns to specific steps in the fabrication process. We propose in this paper a system called DDPfinder that clusters the patterns of defective chips on wafers based on their spatial dependence across wafer maps. Such clustering enables the identification of the dominant defect patterns. DDPfinder clusters chip defects based on how dominant are their spatial patterns across all wafer maps. A chip defect is considered dominant, if: (1) it has a systematic defect pattern arising from a specific assignable cause, and (2) it displays spatial dependence across a larger number of wafer maps when compared with other defects. The spatial dependence of a chip defect is determined based on the contiguity ratio of the defect pattern across wafer maps. DDPfinder uses the dominant chip defects to serve as seeds for clustering the patterns of defective chips. This clustering procedure allows process engineers to prioritize their investigation of chip defects based on the dominance status of their clusters. It allows them to pay more attention to the ongoing manufacturing processes that caused the dominant defects. We evaluated the quality and performance of DDPfinder by comparing it experimentally with eight existing clustering models. Results showed marked improvement

    Development Of An Optical Character Recognition Function System For Integrated Circuit Label Classification Using Neural Network

    Get PDF
    Presently, many Integrated Circuit (IC) manufacturers are applying machine vision solution to ensure the legibility of characters printed on the top surface of IC Package. In template matching technique there are about 10% of ICs rejected due to very little defects in quality of marking even though the characters are correct. The objective of this project is to develop an IC inspection system that has optical character recognition function system by using neural network. Feed forward back propagation neural network method is used in this task. The system developed is able to read 36 characters ( A to Z and 0 to 9) printed on ICs. The recognition time in template matching is 650μs. In neural network technique, by feeding-in Raw Data, Feature, and Hybrid (combination of Raw Data and Feature), they clock 18.22μs, 15.64μs and 19.32μs respectively. The recognition accuracy is 96.26% for the former and 98.25%, 98.83% and 99.61% for the latter. This is a solution to minimise rejects of ICs in manufacturing process. The reduction of processing time in manufacturing process contributes to the increase of productivity. Moreover, application of this technique gives a solution to avoid mismatch of parts (ICs) in manufacturing lots

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    Entwicklung einer Fully-Convolutional-Netzwerkarchitektur für die Detektion von defekten LED-Chips in Photolumineszenzbildern

    Get PDF
    Nowadays, light-emitting diodes (LEDs) can be found in a large variety of applications, from standard LEDs in domestic lighting solutions to advanced chip designs in automobiles, smart watches and video walls. The advances in chip design also affect the test processes, where the execution of certain contact measurements is exacerbated by ever decreasing chip dimensions or even rendered impossible due to the chip design. As an instance, wafer probing determines the electrical and optical properties of all LED chips on a wafer by contacting each and every chip with a prober needle. Chip designs without a contact pad on the surface, however, elude wafer probing and while electrical and optical properties can be determined by sample measurements, defective LED chips are distributed randomly over the wafer. Here, advanced data analysis methods provide a new approach to gather defect information from already available non-contact measurements. Photoluminescence measurements, for example, record a brightness image of an LED wafer, where conspicuous brightness values indicate defective chips. To extract these defect information from photoluminescence images, a computer-vision algorithm is required that transforms photoluminescence images into defect maps. In other words, each and every pixel of a photoluminescence image must be classifed into a class category via semantic segmentation, where so-called fully-convolutional-network algorithms represent the state-of-the-art method. However, the aforementioned task poses several challenges: on the one hand, each pixel in a photoluminescence image represents an LED chip and thus, pixel-fine output resolution is required. On the other hand, photoluminescence images show a variety of brightness values from wafer to wafer in addition to local areas of differing brightness. Additionally, clusters of defective chips assume various shapes, sizes and brightness gradients and thus, the algorithm must reliably recognise objects at multiple scales. Finally, not all salient brightness values correspond to defective LED chips, requiring the algorithm to distinguish salient brightness values corresponding to measurement artefacts, non-defect structures and defects, respectively. In this dissertation, a novel fully-convolutional-network architecture was developed that allows the accurate segmentation of defective LED chips in highly variable photoluminescence wafer images. For this purpose, the basic fully-convolutional-network architecture was modifed with regard to the given application and advanced architectural concepts were incorporated so as to enable a pixel-fine output resolution and a reliable segmentation of multiple scaled defect structures. Altogether, the developed dense ASPP Vaughan architecture achieved a pixel accuracy of 97.5 %, mean pixel accuracy of 96.2% and defect-class accuracy of 92.0 %, trained on a dataset of 136 input-label pairs and hereby showed that fully-convolutional-network algorithms can be a valuable contribution to data analysis in industrial manufacturing.Leuchtdioden (LEDs) werden heutzutage in einer Vielzahl von Anwendungen verbaut, angefangen bei Standard-LEDs in der Hausbeleuchtung bis hin zu technisch fortgeschrittenen Chip-Designs in Automobilen, Smartwatches und Videowänden. Die Weiterentwicklungen im Chip-Design beeinflussen auch die Testprozesse: Hierbei wird die Durchführung bestimmter Kontaktmessungen durch zunehmend verringerte Chip-Dimensionen entweder erschwert oder ist aufgrund des Chip-Designs unmöglich. Die sogenannteWafer-Prober-Messung beispielsweise ermittelt die elektrischen und optischen Eigenschaften aller LED-Chips auf einem Wafer, indem jeder einzelne Chip mit einer Messnadel kontaktiert und vermessen wird; Chip-Designs ohne Kontaktpad auf der Oberfläche können daher nicht durch die Wafer-Prober-Messung charakterisiert werden. Während die elektrischen und optischen Chip-Eigenschaften auch mittels Stichprobenmessungen bestimmt werden können, verteilen sich defekte LED-Chips zufällig über die Waferfläche. Fortgeschrittene Datenanalysemethoden ermöglichen hierbei einen neuen Ansatz, Defektinformationen aus bereits vorhandenen, berührungslosen Messungen zu gewinnen. Photolumineszenzmessungen, beispielsweise, erfassen ein Helligkeitsbild des LEDWafers, in dem auffällige Helligkeitswerte auf defekte LED-Chips hinweisen. Ein Bildverarbeitungsalgorithmus, der diese Defektinformationen aus Photolumineszenzbildern extrahiert und ein Defektabbild erstellt, muss hierzu jeden einzelnen Bildpunkt mittels semantischer Segmentation klassifizieren, eine Technik bei der sogenannte Fully-Convolutional-Netzwerke den Stand der Technik darstellen. Die beschriebene Aufgabe wird jedoch durch mehrere Faktoren erschwert: Einerseits entspricht jeder Bildpunkt eines Photolumineszenzbildes einem LED-Chip, so dass eine bildpunktfeine Auflösung der Netzwerkausgabe notwendig ist. Andererseits weisen Photolumineszenzbilder sowohl stark variierende Helligkeitswerte von Wafer zu Wafer als auch lokal begrenzte Helligkeitsabweichungen auf. Zusätzlich nehmen Defektanhäufungen unterschiedliche Formen, Größen und Helligkeitsgradienten an, weswegen der Algorithmus Objekte verschiedener Abmessungen zuverlässig erkennen können muss. Schlussendlich weisen nicht alle auffälligen Helligkeitswerte auf defekte LED-Chips hin, so dass der Algorithmus in der Lage sein muss zu unterscheiden, ob auffällige Helligkeitswerte mit Messartefakten, defekten LED-Chips oder defektfreien Strukturen korrelieren. In dieser Dissertation wurde eine neuartige Fully-Convolutional-Netzwerkarchitektur entwickelt, die die akkurate Segmentierung defekter LED-Chips in stark variierenden Photolumineszenzbildern von LED-Wafern ermöglicht. Zu diesem Zweck wurde die klassische Fully-Convolutional-Netzwerkarchitektur hinsichtlich der beschriebenen Anwendung angepasst und fortgeschrittene architektonische Konzepte eingearbeitet, um eine bildpunktfeine Ausgabeauflösung und eine zuverlässige Sementierung verschieden großer Defektstrukturen umzusetzen. Insgesamt erzielt die entwickelte dense-ASPP-Vaughan-Architektur eine Pixelgenauigkeit von 97,5 %, durchschnittliche Pixelgenauigkeit von 96,2% und eine Defektklassengenauigkeit von 92,0 %, trainiert mit einem Datensatz von 136 Bildern. Hiermit konnte gezeigt werden, dass Fully-Convolutional-Netzwerke eine wertvolle Erweiterung der Datenanalysemethoden sein können, die in der industriellen Fertigung eingesetzt werden
    corecore