118 research outputs found

    NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms

    Full text link
    The 2017–2027 National Academies' Decadal Survey, Thriving on Our Changing Planet, recommended Surface Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 μm; TIR: 8–12 μm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists

    Towards extending the SWITCH platform for time-critical, cloud-based CUDA applications: Job scheduling parameters influencing performance

    Get PDF
    SWITCH (Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications) allows for the development and deployment of real-time applications in the cloud, but it does not yet support instances backed by Graphics Processing Units (GPUs). Wanting to explore how SWITCH might support CUDA (a GPU architecture) in the future, we have undertaken a review of time-critical CUDA applications, discovering that run-time requirements (which we call ‘wall time’) are in many cases regarded as the most important. We have performed experiments to investigate which parameters have the greatest impact on wall time when running multiple Amazon Web Services GPU-backed instances. Although a maximum of 8 single-GPU instances can be launched in a single Amazon Region, launching just 2 instances rather than 1 gives a 42% decrease in wall time. Also, instances are often wasted doing nothing, and there is a moderately-strong relationship between how problems are distributed across instances and wall time. These findings can be used to enhance the SWITCH provision for specifying Non-Functional Requirements (NFRs); in the future, GPU-backed instances could be supported. These findings can also be used more generally, to optimise the balance between the computational resources needed and the resulting wall time to obtain results

    The data concept behind the data: From metadata models and labelling schemes towards a generic spectral library

    Get PDF
    Spectral libraries play a major role in imaging spectroscopy. They are commonly used to store end-member and spectrally pure material spectra, which are primarily used for mapping or unmixing purposes. However, the development of spectral libraries is time consuming and usually sensor and site dependent. Spectral libraries are therefore often developed, used and tailored only for a specific case study and only for one sensor. Multi-sensor and multi-site use of spectral libraries is difficult and requires technical effort for adaptation, transformation, and data harmonization steps. Especially the huge amount of urban material specifications and its spectral variations hamper the setup of a complete spectral library consisting of all available urban material spectra. By a combined use of different urban spectral libraries, besides the improvement of spectral inter- and intra-class variability, missing material spectra could be considered with respect to a multi-sensor/ -site use. Publicly available spectral libraries mostly lack the metadata information that is essential for describing spectra acquisition and sampling background, and can serve to some extent as a measure of quality and reliability of the spectra and the entire library itself. In the GenLib project, a concept for a generic, multi-site and multi-sensor usable spectral library for image spectra on the urban focus was developed. This presentation will introduce a 1) unified, easy-to-understand hierarchical labeling scheme combined with 2) a comprehensive metadata concept that is 3) implemented in the SPECCHIO spectral information system to promote the setup and usability of a generic urban spectral library (GUSL). The labelling scheme was developed to ensure the translation of individual spectral libraries with their own labelling schemes and their usually varying level of details into the GUSL framework. It is based on a modified version of the EAGLE classification concept by combining land use, land cover, land characteristics and spectral characteristics. The metadata concept consists of 59 mandatory and optional attributes that are intended to specify the spatial context, spectral library information, references, accessibility, calibration, preprocessing steps, and spectra specific information describing library spectra implemented in the GUSL. It was developed on the basis of existing metadata concepts and was subject of an expert survey. The metadata concept and the labelling scheme are implemented in the spectral information system SPECCHIO, which is used for sharing and holding GUSL spectra. It allows easy implementation of spectra as well as their specification with the proposed metadata information to extend the GUSL. Therefore, the proposed data model represents a first fundamental step towards a generic usable and continuously expandable spectral library for urban areas. The metadata concept and the labelling scheme also build the basis for the necessary adaptation and transformation steps of the GUSL in order to use it entirely or in excerpts for further multi-site and multi-sensor applications

    Detecting soil erosion in semi-arid Mediterranean environments using simulated EnMAP data

    Get PDF
    Soil is an essential nature resource. Management of this resource is vital for sustainability and the continued functioning of earths atmospheric, hydrospheric and lithospheric functioning. The assessment and continued monitoring of surface soil state provides the information required to effectively manage this resource. This research used a simulated Environmental Mapping and Analysis Program (EnMAP) hyperspectral image cube of an agricultural region in semi- arid Mediterranean Spain to classify soil erosion states. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to derive within pixel fractions of eroded and accumulated soils. A Classification of the soil erosion states using the scene fraction outputs and digital terrain information. The information products generated in this research provided an optimistic outlook for the applicability of the future EnMAP sensor for soil erosion investigations in semi-arid Mediterranean environments. Additionally, this research verifies that the launch of the EnMAP satellite sensor in 2018 will provide the opportunity to further improve the monitoring of earth finite soil resources.NSERC create AMETHYST , Alberta Terrestrial Imaging Centre

    Spectroscopy-supported digital soil mapping

    Get PDF
    Global environmental changes have resulted in changes in key ecosystem services that soils provide. It is necessary to have up to date soil information on regional and global scales to ensure that these services continue to be provided. As a result, Digital Soil Mapping (DSM) research priorities are among others, advancing methods for data collection and analyses tailored towards large-scale mapping of soil properties. Scientifically, this thesis contributed to the development of methodologies, which aim to optimally use remote and proximal sensing (RS and PS) for DSM to facilitate regional soil mapping. The main contributions of this work with respect to the latter are (I) the critical evaluation of recent research achievements and identification of knowledge gaps for large-scale DSM using RS and PS data, (II) the development of a sparse RS-based sampling approach to represent major soil variability at regional scale, (III) the evaluation and development of different state-of-the-art methods to retrieve soil mineral information from PS, (IV) the improvement of spatially explicit soil prediction models and (V) the integration of RS and PS methods with geostatistical and DSM methods. A review on existing literature about the use of RS and PS for soil and terrain mapping was presented in Chapter 2. Recent work indicated the large potential of using RS and PS methods for DSM. However, for large-scale mapping, current methods will need to be extended beyond the plot. Improvements may be expected in the fields of developing more quantitative methods, enhanced geostatistical analysis and improved transferability to other areas. From these findings, three major research interests were selected: (I) soil sampling strategies, (II) retrieval of soil information from PS and (III) spatially continuous mapping of soil properties at larger scales using RS. Budgetary constraints, limited time and available soil legacy data restricted the soil data acquisition, presented in Chapter 3. A 15.000 km2 area located in Northern Morocco served as test case. Here, a sample was collected using constrained Latin Hypercube Sampling (cLHS) of RS and elevation data. The RS data served as proxy for soil variability, as alternative for the required soil legacy data supporting the sampling strategy. The sampling aim was to optimally sample the variability in the RS data while minimizing the acquisition efforts. This sample resulted in a dataset representing major soil variability. The cLHS sample failed to express spatial correlation; constraining the LHS by a distance criterion favoured large spatial variability over short distances. The absence of spatial correlation in the sampled soil variability precludes the use of additional geostatistical analyses to spatially predict soil properties. Predicting soil properties using the cLHS sample is thus restricted to a modelled statistical relation between the sample and exhaustive predictor variables. For this, the RS data provided the necessary spatial information because of the strong spatial correlation while the spectral information provided the variability of the environment (Chapter 3 and 6). Concluding, the RS-based cLHS approach is considered a time and cost efficient method for acquiring information on soil resources over extended areas. This sample was further used for developing methods to derive soil mineral information from PS, and to characterize regional soil mineralogy using RS. In Chapter 4, the influences of complex scattering within the mixture and overlapping absorption features were investigated. This was done by comparing the success of PRISM’s MICA in determining mineralogy of natural samples and modelled spectra. The modelled spectra were developed by a linearly forward model of reflectance spectra, using the fraction of known constituents within the sample. The modelled spectra accounted for the co-occurrence of absorption features but eluded the complex interaction between the components. It was found that more minerals could be determined with higher accuracy using modelled reflectance. The absorption features in the natural samples were less distinct or even absent, which hampered the classification routine. Nevertheless, grouping the individual minerals into mineral categories significantly improved the classification accuracy. These mineral categories are particularly useful for regional scale studies, as key soil property for parent material characterization and soil formation. Characterizing regional soil mineralogy by mineral categories was further described in Chapter 6. Retrieval of refined information from natural samples, such as mineral abundances, is more complex; estimating abundances requires a method that accounts for the interaction between minerals within the intimate mixture. This can be done by addressing the interaction with a non-linear model (Chapter 5). Chapter 5 showed that mineral abundances in complex mixtures could be estimated using absorption features in the 2.1–2.4 µm wavelength region. First, the absorption behaviour of mineral mixtures was parameterized by exponential Gaussian optimization (EGO). Next, mineral abundances were successfully predicted by regression tree analysis, using these parameters as inputs. Estimating mineral abundances using prepared mixes of calcite, kaolinite, montmorillonite and dioctahedral mica or field samples proved the validity of the proposed method. Estimating mineral abundances of field samples showed the necessity to deconvolve spectra by EGO. Due to the nature of the field samples, the simple representation of the complex scattering behaviour by a few Gaussian bands required the parameters asymmetry and saturation to accurately deconvolve the spectra. Also, asymmetry of the EGO profiles showed to be an important parameter for estimating the abundances of the field samples. The robustness of the method in handling the omission of minerals during the training phase was tested by replacing part of the quartz with chlorite. It was found that the accuracy of the predicted mineral content was hardly affected. Concluding, the proposed method allowed for estimating more than two minerals within a mixture. This approach advances existing PS methods and has the potential to quantify a wider set of soil properties. With this method the soil science community was provided an improved inference method to derive and quantify soil properties The final challenge of this thesis was to spatially explicit model regional soil mineralogy using the sparse sample from Chapter 3. Prediction models have especially difficulties relating predictor variables to sampled properties having high spatial correlation. Chapter 6 presented a methodology that improved prediction models by using scale-dependent spatial variability observed in RS data. Mineral predictions were made using the abundances from X-ray diffraction analysis and mineral categories determined by PRISM. The models indicated that using the original RS data resulted in lower model performance than those models using scaled RS data. Key to the improved predictions was representing the variability of the RS data at the same scale as the sampled soil variability. This was realized by considering the medium and long-range spatial variability in the RS data. Using Fixed Rank Kriging allowed smoothing the massive RS datasets to these ranges. The resulting images resembled more closely the regional spatial variability of soil and environmental properties. Further improvements resulted from using multi-scale soil-landscape relationships to predict mineralogy. The maps of predicted mineralogy showed agreement between the mineral categories and abundances. Using a geostatistical approach in combination with a small sample, substantially improves the feasibility to quantitatively map regional mineralogy. Moreover, the spectroscopic method appeared sufficiently detailed to map major mineral variability. Finally, this approach has the potential for modelling various natural resources and thereby enhances the perspective of a global system for inventorying and monitoring the earth’s soil resources. With this thesis it is demonstrated that RS and PS methods are an important but also an essential source for regional-scale DSM. Following the main findings from this thesis, it can be concluded that: Improvements in regional-scale DSM result from the integrated use of RS and PS with geostatistical methods. In every step of the soil mapping process, spectroscopy can play a key role and can deliver data in a time and cost efficient manner. Nevertheless, there are issues that need to be resolved in the near future. Research priorities involve the development of operational tools to quantify soil properties, sensor integration, spatiotemporal modelling and the use of geostatistical methods that allow working with massive RS datasets. This will allow us in the near future to deliver more accurate and comprehensive information about soils, soil resources and ecosystem services provided by soils at regional and, ultimately, global scale.</p

    Calibration of DART Radiative Transfer Model with Satellite Images for Simulating Albedo and Thermal Irradiance Images and 3D Radiative Budget of Urban Environment

    Get PDF
    Remote sensing is increasingly used for managing urban environment. In this context, the H2020 project URBANFLUXES aims to improve our knowledge on urban anthropogenic heat fluxes, with the specific study of three cities: London, Basel and Heraklion. Usually, one expects to derive directly 2 major urban parameters from remote sensing: the albedo and thermal irradiance. However, the determination of these two parameters is seriously hampered by complexity of urban architecture. For example, urban reflectance and brightness temperature are far from isotropic and are spatially heterogeneous. Hence, radiative transfer models that consider the complexity of urban architecture when simulating remote sensing signals are essential tools. Even for these sophisticated models, there is a major constraint for an operational use of remote sensing: the complex 3D distribution of optical properties and temperatures in urban environments. Here, the work is conducted with the DART (Discrete Anisotropic Radiative Transfer) model. It is a comprehensive physically based 3D radiative transfer model that simulates optical signals at the entrance of imaging spectro-radiometers and LiDAR scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental (atmosphere, topography,…) and instrumental (sensor altitude, spatial resolution, UV to thermal infrared,…) configuration. Paul Sabatier University distributes free licenses for research activities. This paper presents the calibration of DART model with high spatial resolution satellite images (Landsat 8, Sentinel 2, etc.) that are acquired in the visible (VIS) / near infrared (NIR) domain and in the thermal infrared (TIR) domain. Here, the work is conducted with an atmospherically corrected Landsat 8 image and Bale city, with its urban database. The calibration approach in the VIS/IR domain encompasses 5 steps for computing the 2D distribution (image) of urban albedo at satellite spatial resolution. (1) DART simulation of satellite image at very high spatial resolution (e.g., 50cm) per satellite spectral band. Atmosphere conditions are specific to the satellite image acquisition. (2) Spatial resampling of DART image at the coarser spatial resolution of the available satellite image, per spectral band. (3) Iterative derivation of the urban surfaces (roofs, walls, streets, vegetation,…) optical properties as derived from pixel-wise comparison of DART and satellite images, independently per spectral band. (4) Computation of the band albedo image of the city, per spectral band. (5) Computation of the image of the city albedo and VIS/NIR exitance, as an integral over all satellite spectral bands. In order to get a time series of albedo and VIS/NIR exitance, even in the absence of satellite images, ECMWF information about local irradiance and atmosphere conditions are used. A similar approach is used for calculating the city thermal exitance using satellite images acquired in the thermal infrared domain. Finally, DART simulations that are conducted with the optical properties derived from remote sensing images give also the 3D radiative budget of the city at any date including the date of the satellite image acquisition

    Analyzing the Adoption, Cropping Rotation, and Impact of Winter Cover Crops in the Mississippi Alluvial Plain (MAP) Region through Remote Sensing Technologies

    Get PDF
    This dissertation explores the application of remote sensing technologies in conservation agriculture, specifically focusing on identifying and mapping winter cover crops and assessing voluntary cover crop adoption and cropping patterns in the Arkansas portion of the Mississippi Alluvial Plain (MAP). In the first chapter, a systematic review using the PRISMA methodology examines the last 30 years of thematic research, development, and trends in remote sensing applied to conservation agriculture from a global perspective. The review uncovers a growing interest in remote sensing-based research in conservation agriculture and emphasizes the necessity for further studies dedicated to conservation practices. Among the 68 articles examined, 94% of studies utilized a pixel-based classification method, while only 6% employed an object-based approach. The analysis also revealed a thematic shift over time, with tillage practices being extensively studied before 2005, followed by a focus on crop residue from 2004 to 2012. From 2012 to 2020, there was a renewed emphasis on cover crops research. These findings highlight the evolving research landscape and provide insights into the trends within remote sensing-based conservation agriculture studies. The second chapter presents a methodological framework for identifying and mapping winter cover crops. The framework utilizes the Google Earth Engine (GEE) and a Random Forest (RF) classifier with time series data from Landsat 8 satellite. Results demonstrate a high classification accuracy (97.7%) and a significant increase (34%) in model-predicted cover crop adoption over the study period between 2013 and 2019. Additionally, the study showcases the use of multi-year datasets to efficiently map the growing season\u27s length and cover crops\u27 phenological characteristics. The third chapter assesses the voluntary adoption of winter cover crops and cropping patterns in the MAP region. Remote sensing technologies, USDA-NRCS government cover crop data sources, and the USDA Cropland Data Layer (CDL) are employed to identify cover crop locations, analyze county-wide voluntary adoption, and cropping rotations. The result showed a 5.33% increase in the overall voluntary adoption of cover crops in the study region between 2013 and 2019. The findings also indicate a growing trend in cover crop adoption, with soybean-cover crop rotations being prominent. This dissertation enhances our understanding of the role of remote sensing in conservation agriculture with a particular focus on winter cover crops. These insights are valuable for policymakers, stakeholders, and researchers seeking to promote sustainable agricultural practices and increased cover crop adoption. The study also underscores the significance of integrating remote sensing technologies into agricultural decision-making processes and highlights the importance of collaboration among policymakers, researchers, and producers. By leveraging the capabilities of remote sensing, it will enhance conservation agriculture contribution to long-term environmental sustainability and agricultural resilience. Keywords: Remote sensing technologies, Conservation agriculture, Winter cover crops, Voluntary adoption, Cropping patterns, Sustainable agricultural practice

    Analyzing the Adoption, Cropping Rotation, and Impact of Winter Cover Crops in the Mississippi Alluvial Plain (MAP) Region through Remote Sensing Technologies

    Get PDF
    This dissertation explores the application of remote sensing technologies in conservation agriculture, specifically focusing on identifying and mapping winter cover crops and assessing voluntary cover crop adoption and cropping patterns in the Arkansas portion of the Mississippi Alluvial Plain (MAP). In the first chapter, a systematic review using the PRISMA methodology examines the last 30 years of thematic research, development, and trends in remote sensing applied to conservation agriculture from a global perspective. The review uncovers a growing interest in remote sensing-based research in conservation agriculture and emphasizes the necessity for further studies dedicated to conservation practices. Among the 68 articles examined, 94% of studies utilized a pixel-based classification method, while only 6% employed an object-based approach. The analysis also revealed a thematic shift over time, with tillage practices being extensively studied before 2005, followed by a focus on crop residue from 2004 to 2012. From 2012 to 2020, there was a renewed emphasis on cover crops research. These findings highlight the evolving research landscape and provide insights into the trends within remote sensing-based conservation agriculture studies. The second chapter presents a methodological framework for identifying and mapping winter cover crops. The framework utilizes the Google Earth Engine (GEE) and a Random Forest (RF) classifier with time series data from Landsat 8 satellite. Results demonstrate a high classification accuracy (97.7%) and a significant increase (34%) in model-predicted cover crop adoption over the study period between 2013 and 2019. Additionally, the study showcases the use of multi-year datasets to efficiently map the growing season\u27s length and cover crops\u27 phenological characteristics. The third chapter assesses the voluntary adoption of winter cover crops and cropping patterns in the MAP region. Remote sensing technologies, USDA-NRCS government cover crop data sources, and the USDA Cropland Data Layer (CDL) are employed to identify cover crop locations, analyze county-wide voluntary adoption, and cropping rotations. The result showed a 5.33% increase in the overall voluntary adoption of cover crops in the study region between 2013 and 2019. The findings also indicate a growing trend in cover crop adoption, with soybean-cover crop rotations being prominent. This dissertation enhances our understanding of the role of remote sensing in conservation agriculture with a particular focus on winter cover crops. These insights are valuable for policymakers, stakeholders, and researchers seeking to promote sustainable agricultural practices and increased cover crop adoption. The study also underscores the significance of integrating remote sensing technologies into agricultural decision-making processes and highlights the importance of collaboration among policymakers, researchers, and producers. By leveraging the capabilities of remote sensing, it will enhance conservation agriculture contribution to long-term environmental sustainability and agricultural resilience. Keywords: Remote sensing technologies, Conservation agriculture, Winter cover crops, Voluntary adoption, Cropping patterns, Sustainable agricultural practice
    corecore