27 research outputs found

    An unmanned aircraft system to detect a radiological point source using RIMA software architecture

    Get PDF
    Unmanned Aircraft Systems (UASs), together with the miniaturisation of computers, sensors, and electronics, offer new remote sensing applications. However, there is a lack of hardware and software support to effectively develop the potential of UASs in different remote sensing applications, such as the detection of radioactive sources. This paper presents the design, development and validation of a UAS for the detection of an uncontrolled and point radioactive source. The article describes a flexible and reusable software architecture for detecting the radioactive source (NaTcO 4 , containing 99m Tc) with a gamma-ray Cadmium Zinc Telluride (CZT) spectrometer as a proof of concept. The UAS is equipped with multichannel air-ground communications to perform missions beyond line of sight and onboard computation to process samples in real time and thus react to any anomaly detected during the mission. An ad hoc ground control station (GCS) has also been developed for the correct interpretation of the radioactive samples taken by the UAS. Radiological spectra plots, contour mapping and waterfall plots are some of the elements used in the ad hoc GCS. The article shows the results obtained in a flight campaign performing different flights at different altitudes and speeds over the radiological source, demonstrating the viability of the system.Peer ReviewedPostprint (published version

    Overview of the existing UAV regulatory framework in European contries in the context of an emergency response and emergency response exercises

    Get PDF
    Bespilotne letelice, kolokvijalno poznatije kao dronovi, mogu biti od velike pomoći prilikom prikupljanja podataka visoke rezolucije, naročito u slučajevima kada direktno uključivanje obučenog osoblja na lokaciji od interesa ne bi bilo poželjno. Takav je slučaj sa reagovanjem u slučaju nuklearnog ili radiološkog akcidenta. Dron koji bi imao niz kompaktnih senzora, koji bi sadržali i specijalizovanu opremu koja nije deo standardnog tovara drona, kao što je npr. gama spektrometar, bi bio od velike pomoći, naravno pod pretpostavkom pouzdanog linka za prenos podataka u izazovnom okruženju kakvo je i očekivano u tom slučaju. Pitanje koje komplikuje upotrebu dronova u ovakvim situacijama, a možda i više u slučaju istraživanja i vežbi (koje moraju prethoditi bilo kakvoj realnoj upotrebi) je heterogeni regulatorni okvir koji postoji u evropskim zemljama. Ova fragmentacija je potekla od činjenice da je Evropska komisija ostavila regulisanje dronova mase ispod 150kg zemljama članicama. Iako je nova, harmonizujuća regulativa u procesu donošenja i primene, različiti nacionalni regulatorni okviri su još uvek na snazi, i oni imaju i slučnosti ali i kontrastirajuće elemente. U ovom radu je dat pregled odabranih nacionalnih regulativa u kontekstu reagovanja u vanrednim situacijama kao i uvid u neke buduće trendove.Unmanned aerial vehicles -UAVs, more colloquially known as drones, can be of great help in high resolution data acquisition, especially in situations where direct, on-the-ground involvement of trained personnel would be strongly undesirable. One such case is an emergency response following a nuclear or radiological event. Drone mounted with array of compact sensors, which may include specialized equipment not commonly found in the payload, such as gamma spectrometer, would be of great help to first responders, of course under assumption of a reliable data link in a complicated environment. Issue that complicates use of drones in emergency situations, and maybe even more so in research and exercises (that must precede any realistic use) is heterogeneous regulatory framework that currently exists in European countries. This fragmentation originated from the fact that European Commission left regulation of drones under 150kg to Member States. While new harmonizing legislation is under discussion, various national UAV regulations are still in place, with strong similarities but also with contrasting elements. This work summarizes current status of various national UAV regulations in the context of emergency response and also gives perspective into future trends.Proceedings: [http://vinar.vin.bg.ac.rs/handle/123456789/8681]XXX симпозијум ДЗЗСЦГ (Друштва за заштиту од зрачења Србије и Црне Горе), 2- 4. октобар 2019. године, Дивчибаре, Србиј

    Overview of the existing UAV regulatory framework in European contries in the context of an emergency response and emergency response exercises

    Get PDF
    Bespilotne letelice, kolokvijalno poznatije kao dronovi, mogu biti od velike pomoći prilikom prikupljanja podataka visoke rezolucije, naročito u slučajevima kada direktno uključivanje obučenog osoblja na lokaciji od interesa ne bi bilo poželjno. Takav je slučaj sa reagovanjem u slučaju nuklearnog ili radiološkog akcidenta. Dron koji bi imao niz kompaktnih senzora, koji bi sadržali i specijalizovanu opremu koja nije deo standardnog tovara drona, kao što je npr. gama spektrometar, bi bio od velike pomoći, naravno pod pretpostavkom pouzdanog linka za prenos podataka u izazovnom okruženju kakvo je i očekivano u tom slučaju. Pitanje koje komplikuje upotrebu dronova u ovakvim situacijama, a možda i više u slučaju istraživanja i vežbi (koje moraju prethoditi bilo kakvoj realnoj upotrebi) je heterogeni regulatorni okvir koji postoji u evropskim zemljama. Ova fragmentacija je potekla od činjenice da je Evropska komisija ostavila regulisanje dronova mase ispod 150kg zemljama članicama. Iako je nova, harmonizujuća regulativa u procesu donošenja i primene, različiti nacionalni regulatorni okviri su još uvek na snazi, i oni imaju i slučnosti ali i kontrastirajuće elemente. U ovom radu je dat pregled odabranih nacionalnih regulativa u kontekstu reagovanja u vanrednim situacijama kao i uvid u neke buduće trendove.Unmanned aerial vehicles -UAVs, more colloquially known as drones, can be of great help in high resolution data acquisition, especially in situations where direct, on-the-ground involvement of trained personnel would be strongly undesirable. One such case is an emergency response following a nuclear or radiological event. Drone mounted with array of compact sensors, which may include specialized equipment not commonly found in the payload, such as gamma spectrometer, would be of great help to first responders, of course under assumption of a reliable data link in a complicated environment. Issue that complicates use of drones in emergency situations, and maybe even more so in research and exercises (that must precede any realistic use) is heterogeneous regulatory framework that currently exists in European countries. This fragmentation originated from the fact that European Commission left regulation of drones under 150kg to Member States. While new harmonizing legislation is under discussion, various national UAV regulations are still in place, with strong similarities but also with contrasting elements. This work summarizes current status of various national UAV regulations in the context of emergency response and also gives perspective into future trends.Proceedings: [http://vinar.vin.bg.ac.rs/handle/123456789/8681]XXX симпозијум ДЗЗСЦГ (Друштва за заштиту од зрачења Србије и Црне Горе), 2- 4. октобар 2019. године, Дивчибаре, Србиј

    Informe bibliomètric bimestral Campus Baix Llobregat. Base de dades Scopus. Novembre-desembre 2018

    Get PDF
    Informe bibliomètric bimestral Campus Baix Llobregat. Base de dades Scopus. Data de la cerca 08/01/2019Postprint (author's final draft

    Robotic Exploration of an Unknown Nuclear Environment Using Radiation Informed Autonomous Navigation

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-05-15, pub-electronic 2021-05-24Publication status: PublishedThis paper describes a novel autonomous ground vehicle that is designed for exploring unknown environments which contain sources of ionising radiation, such as might be found in a nuclear disaster site or a legacy nuclear facility. While exploring the environment, it is important that the robot avoids radiation hot spots to minimise breakdowns. Broken down robots present a real problem: they not only cause the mission to fail but they can block access routes for future missions. Until now, such robots have had no autonomous gamma radiation avoidance capabilities. New software algorithms are presented that allow radiation measurements to be converted into a format in which they can be integrated into the robot’s navigation system so that it can actively avoid receiving a high radiation dose during a mission. An unmanned ground vehicle was fitted with a gamma radiation detector and an autonomous navigation package that included the new radiation avoidance software. The full system was evaluated experimentally in a complex semi-structured environment that contained two radiation sources. In the experiment, the robot successfully identified both sources and avoided areas that were found to have high levels of radiation while navigating between user defined waypoints. This advancement in the state-of-the-art has the potential to deliver real benefit to the nuclear industry, in terms of both increased chance of mission success and reduction of the reliance on human operatives to perform tasks in dangerous radiation environments

    Articles publicats en accés obert al 2018 al Campus del Baix Llobregat

    Get PDF
    Amb motiu de la setmana mundial de l'accés obert (Open Access Week 2019) presentem aquest document amb els articles publicats en accés obert publicats al 2018 des del Campus del Baix Llobregat a Castelldefels.Postprint (published version

    Ubiquitous supercomputing : design and development of enabling technologies for multi-robot systems rethinking supercomputing

    Get PDF
    Supercomputing, also known as High Performance Computing (HPC), is almost everywhere (ubiquitous), from the small widget in your phone telling you that today will be a sunny day, up to the next great contribution to the understanding of the origins of the universe.However, there is a field where supercomputing has been only slightly explored - robotics. Other than attempts to optimize complex robotics tasks, the two forces lack an effective alignment and a purposeful long-term contract. With advancements in miniaturization, communications and the appearance of powerful, energy and weight optimized embedded computing boards, a next logical transition corresponds to the creation of clusters of robots, a set of robotic entities that behave similarly as a supercomputer does. Yet, there is key aspect regarding our current understanding of what supercomputing means, or is useful for, that this work aims to redefine. For decades, supercomputing has been solely intended as a computing efficiency mechanism i.e. decreasing the computing time for complex tasks. While such train of thought have led to countless findings, supercomputing is more than that, because in order to provide the capacity of solving most problems quickly, another complete set of features must be provided, a set of features that can also be exploited in contexts such as robotics and that ultimately transform a set of independent entities into a cohesive unit.This thesis aims at rethinking what supercomputing means and to devise strategies to effectively set its inclusion within the robotics realm, contributing therefore to the ubiquity of supercomputing, the first main ideal of this work. With this in mind, a state of the art concerning previous attempts to mix robotics and HPC will be outlined, followed by the proposal of High Performance Robotic Computing (HPRC), a new concept mapping supercomputing to the nuances of multi-robot systems. HPRC can be thought as supercomputing in the edge and while this approach will provide all kind of advantages, in certain applications it might not be enough since interaction with external infrastructures will be required or desired. To facilitate such interaction, this thesis proposes the concept of ubiquitous supercomputing as the union of HPC, HPRC and two more type of entities, computing-less devices (e.g. sensor networks, etc.) and humans.The results of this thesis include the ubiquitous supercomputing ontology and an enabling technology depicted as The ARCHADE. The technology serves as a middleware between a mission and a supercomputing infrastructure and as a framework to facilitate the execution of any type of mission, i.e. precision agriculture, entertainment, inspection and monitoring, etc. Furthermore, the results of the execution of a set of missions are discussed.By integrating supercomputing and robotics, a second ideal is targeted, ubiquitous robotics, i.e. the use of robots in all kind of applications. Correspondingly, a review of existing ubiquitous robotics frameworks is presented and based upon its conclusions, The ARCHADE's design and development have followed the guidelines for current and future solutions. Furthermore, The ARCHADE is based on a rethought supercomputing where performance is not the only feature to be provided by ubiquitous supercomputing systems. However, performance indicators will be discussed, along with those related to other supercomputing features.Supercomputing has been an excellent ally for scientific exploration and not so long ago for commercial activities, leading to all kind of improvements in our lives, in our society and in our future. With the results of this thesis, the joining of two fields, two forces previously disconnected because of their philosophical approaches and their divergent backgrounds, holds enormous potential to open up our imagination for all kind of new applications and for a world where robotics and supercomputing are everywhere.La supercomputación, también conocida como Computación de Alto Rendimiento (HPC por sus siglas en inglés) puede encontrarse en casi cualquier lugar (ubicua), desde el widget en tu teléfono diciéndote que hoy será un día soleado, hasta la siguiente gran contribución al entendimiento de los orígenes del universo. Sin embargo, hay un campo en el que ha sido poco explorada - la robótica. Más allá de intentos de optimizar tareas robóticas complejas, las dos fuerzas carecen de un contrato a largo plazo. Dado los avances en miniaturización, comunicaciones y la aparición de potentes computadores embebidos, optimizados en peso y energía, la siguiente transición corresponde a la creación de un cluster de robots, un conjunto de robots que se comportan de manera similar a un supercomputador. No obstante, hay un aspecto clave, con respecto a la comprensión de la supercomputación, que esta tesis pretende redefinir. Durante décadas, la supercomputación ha sido entendida como un mecanismo de eficiencia computacional, es decir para reducir el tiempo de computación de ciertos problemas extremadamente complejos. Si bien este enfoque ha conducido a innumerables hallazgos, la supercomputación es más que eso, porque para proporcionar la capacidad de resolver todo tipo de problemas rápidamente, se debe proporcionar otro conjunto de características que también pueden ser explotadas en la robótica y que transforman un conjunto de robots en una unidad cohesiva. Esta tesis pretende repensar lo que significa la supercomputación y diseñar estrategias para establecer su inclusión dentro del mundo de la robótica, contribuyendo así a su ubicuidad, el principal ideal de este trabajo. Con esto en mente, se presentará un estado del arte relacionado con intentos anteriores de mezclar robótica y HPC, seguido de la propuesta de Computación Robótica de Alto Rendimiento (HPRC, por sus siglas en inglés), un nuevo concepto, que mapea la supercomputación a los matices específicos de los sistemas multi-robot. HPRC puede pensarse como supercomputación en el borde y si bien este enfoque proporcionará todo tipo de ventajas, ciertas aplicaciones requerirán una interacción con infraestructuras externas. Para facilitar dicha interacción, esta tesis propone el concepto de supercomputación ubicua como la unión de HPC, HPRC y dos tipos más de entidades, dispositivos sin computación embebida y seres humanos. Los resultados de esta tesis incluyen la ontología de la supercomputación ubicua y una tecnología llamada The ARCHADE. La tecnología actúa como middleware entre una misión y una infraestructura de supercomputación y como framework para facilitar la ejecución de cualquier tipo de misión, por ejemplo, agricultura de precisión, inspección y monitoreo, etc. Al integrar la supercomputación y la robótica, se busca un segundo ideal, robótica ubicua, es decir el uso de robots en todo tipo de aplicaciones. Correspondientemente, una revisión de frameworks existentes relacionados serán discutidos. El diseño y desarrollo de The ARCHADE ha seguido las pautas y sugerencias encontradas en dicha revisión. Además, The ARCHADE se basa en una supercomputación repensada donde la eficiencia computacional no es la única característica proporcionada a sistemas basados en la tecnología. Sin embargo, se analizarán indicadores de eficiencia computacional, junto con otros indicadores relacionados con otras características de la supercomputación. La supercomputación ha sido un excelente aliado para la exploración científica, conduciendo a todo tipo de mejoras en nuestras vidas, nuestra sociedad y nuestro futuro. Con los resultados de esta tesis, la unión de dos campos, dos fuerzas previamente desconectadas debido a sus enfoques filosóficos y sus antecedentes divergentes, tiene un enorme potencial para abrir nuestra imaginación hacia todo tipo de aplicaciones nuevas y para un mundo donde la robótica y la supercomputación estén en todos lado

    Ubiquitous supercomputing : design and development of enabling technologies for multi-robot systems rethinking supercomputing

    Get PDF
    Supercomputing, also known as High Performance Computing (HPC), is almost everywhere (ubiquitous), from the small widget in your phone telling you that today will be a sunny day, up to the next great contribution to the understanding of the origins of the universe.However, there is a field where supercomputing has been only slightly explored - robotics. Other than attempts to optimize complex robotics tasks, the two forces lack an effective alignment and a purposeful long-term contract. With advancements in miniaturization, communications and the appearance of powerful, energy and weight optimized embedded computing boards, a next logical transition corresponds to the creation of clusters of robots, a set of robotic entities that behave similarly as a supercomputer does. Yet, there is key aspect regarding our current understanding of what supercomputing means, or is useful for, that this work aims to redefine. For decades, supercomputing has been solely intended as a computing efficiency mechanism i.e. decreasing the computing time for complex tasks. While such train of thought have led to countless findings, supercomputing is more than that, because in order to provide the capacity of solving most problems quickly, another complete set of features must be provided, a set of features that can also be exploited in contexts such as robotics and that ultimately transform a set of independent entities into a cohesive unit.This thesis aims at rethinking what supercomputing means and to devise strategies to effectively set its inclusion within the robotics realm, contributing therefore to the ubiquity of supercomputing, the first main ideal of this work. With this in mind, a state of the art concerning previous attempts to mix robotics and HPC will be outlined, followed by the proposal of High Performance Robotic Computing (HPRC), a new concept mapping supercomputing to the nuances of multi-robot systems. HPRC can be thought as supercomputing in the edge and while this approach will provide all kind of advantages, in certain applications it might not be enough since interaction with external infrastructures will be required or desired. To facilitate such interaction, this thesis proposes the concept of ubiquitous supercomputing as the union of HPC, HPRC and two more type of entities, computing-less devices (e.g. sensor networks, etc.) and humans.The results of this thesis include the ubiquitous supercomputing ontology and an enabling technology depicted as The ARCHADE. The technology serves as a middleware between a mission and a supercomputing infrastructure and as a framework to facilitate the execution of any type of mission, i.e. precision agriculture, entertainment, inspection and monitoring, etc. Furthermore, the results of the execution of a set of missions are discussed.By integrating supercomputing and robotics, a second ideal is targeted, ubiquitous robotics, i.e. the use of robots in all kind of applications. Correspondingly, a review of existing ubiquitous robotics frameworks is presented and based upon its conclusions, The ARCHADE's design and development have followed the guidelines for current and future solutions. Furthermore, The ARCHADE is based on a rethought supercomputing where performance is not the only feature to be provided by ubiquitous supercomputing systems. However, performance indicators will be discussed, along with those related to other supercomputing features.Supercomputing has been an excellent ally for scientific exploration and not so long ago for commercial activities, leading to all kind of improvements in our lives, in our society and in our future. With the results of this thesis, the joining of two fields, two forces previously disconnected because of their philosophical approaches and their divergent backgrounds, holds enormous potential to open up our imagination for all kind of new applications and for a world where robotics and supercomputing are everywhere.La supercomputación, también conocida como Computación de Alto Rendimiento (HPC por sus siglas en inglés) puede encontrarse en casi cualquier lugar (ubicua), desde el widget en tu teléfono diciéndote que hoy será un día soleado, hasta la siguiente gran contribución al entendimiento de los orígenes del universo. Sin embargo, hay un campo en el que ha sido poco explorada - la robótica. Más allá de intentos de optimizar tareas robóticas complejas, las dos fuerzas carecen de un contrato a largo plazo. Dado los avances en miniaturización, comunicaciones y la aparición de potentes computadores embebidos, optimizados en peso y energía, la siguiente transición corresponde a la creación de un cluster de robots, un conjunto de robots que se comportan de manera similar a un supercomputador. No obstante, hay un aspecto clave, con respecto a la comprensión de la supercomputación, que esta tesis pretende redefinir. Durante décadas, la supercomputación ha sido entendida como un mecanismo de eficiencia computacional, es decir para reducir el tiempo de computación de ciertos problemas extremadamente complejos. Si bien este enfoque ha conducido a innumerables hallazgos, la supercomputación es más que eso, porque para proporcionar la capacidad de resolver todo tipo de problemas rápidamente, se debe proporcionar otro conjunto de características que también pueden ser explotadas en la robótica y que transforman un conjunto de robots en una unidad cohesiva. Esta tesis pretende repensar lo que significa la supercomputación y diseñar estrategias para establecer su inclusión dentro del mundo de la robótica, contribuyendo así a su ubicuidad, el principal ideal de este trabajo. Con esto en mente, se presentará un estado del arte relacionado con intentos anteriores de mezclar robótica y HPC, seguido de la propuesta de Computación Robótica de Alto Rendimiento (HPRC, por sus siglas en inglés), un nuevo concepto, que mapea la supercomputación a los matices específicos de los sistemas multi-robot. HPRC puede pensarse como supercomputación en el borde y si bien este enfoque proporcionará todo tipo de ventajas, ciertas aplicaciones requerirán una interacción con infraestructuras externas. Para facilitar dicha interacción, esta tesis propone el concepto de supercomputación ubicua como la unión de HPC, HPRC y dos tipos más de entidades, dispositivos sin computación embebida y seres humanos. Los resultados de esta tesis incluyen la ontología de la supercomputación ubicua y una tecnología llamada The ARCHADE. La tecnología actúa como middleware entre una misión y una infraestructura de supercomputación y como framework para facilitar la ejecución de cualquier tipo de misión, por ejemplo, agricultura de precisión, inspección y monitoreo, etc. Al integrar la supercomputación y la robótica, se busca un segundo ideal, robótica ubicua, es decir el uso de robots en todo tipo de aplicaciones. Correspondientemente, una revisión de frameworks existentes relacionados serán discutidos. El diseño y desarrollo de The ARCHADE ha seguido las pautas y sugerencias encontradas en dicha revisión. Además, The ARCHADE se basa en una supercomputación repensada donde la eficiencia computacional no es la única característica proporcionada a sistemas basados en la tecnología. Sin embargo, se analizarán indicadores de eficiencia computacional, junto con otros indicadores relacionados con otras características de la supercomputación. La supercomputación ha sido un excelente aliado para la exploración científica, conduciendo a todo tipo de mejoras en nuestras vidas, nuestra sociedad y nuestro futuro. Con los resultados de esta tesis, la unión de dos campos, dos fuerzas previamente desconectadas debido a sus enfoques filosóficos y sus antecedentes divergentes, tiene un enorme potencial para abrir nuestra imaginación hacia todo tipo de aplicaciones nuevas y para un mundo donde la robótica y la supercomputación estén en todos ladosPostprint (published version
    corecore