6,586 research outputs found

    Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach

    Get PDF
    It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV

    Complex-valued Time Series Modeling for Improved Activation Detection in fMRI Studies

    Get PDF
    A complex-valued data-based model with th order autoregressive errors and general real/imaginary error covariance structure is proposed as an alternative to the commonly used magnitude-only data-based autoregressive model for fMRI time series. Likelihood-ratio-test-based activation statistics are derived for both models and compared for experimental and simulated data. For a dataset from a right-hand finger-tapping experiment, the activation map obtained using complex-valued modeling more clearly identifies the primary activation region (left functional central sulcus) than the magnitude-only model. Such improved accuracy in mapping the left functional central sulcus has important implications in neurosurgical planning for tumor and epilepsy patients. Additionally, we develop magnitude and phase detrending procedures for complex-valued time series and examine the effect of spatial smoothing. These methods improve the power of complex-valued data-based activation statistics. Our results advocate for the use of the complex-valued data and the modeling of its dependence structures as a more efficient and reliable tool in fMRI experiments over the current practice of using only magnitude-valued datasets
    • …
    corecore