1,746 research outputs found

    Generation and processing of simulated underwater images for infrastructure visual inspection with UUVs

    Get PDF
    The development of computer vision algorithms for navigation or object detection is one of the key issues of underwater robotics. However, extracting features from underwater images is challenging due to the presence of lighting defects, which need to be counteracted. This requires good environmental knowledge, either as a dataset or as a physic model. The lack of available data, and the high variability of the conditions, makes difficult the development of robust enhancement algorithms. A framework for the development of underwater computer vision algorithms is presented, consisting of a method for underwater imaging simulation, and an image enhancement algorithm, both integrated in the open-source robotics simulator UUV Simulator. The imaging simulation is based on a novel combination of the scattering model and style transfer techniques. The use of style transfer allows a realistic simulation of different environments without any prior knowledge of them. Moreover, an enhancement algorithm that successfully performs a correction of the imaging defects in any given scenario for either the real or synthetic images has been developed. The proposed approach showcases then a novel framework for the development of underwater computer vision algorithms for SLAM, navigation, or object detection in UUV

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness

    Integration of a stereo vision system into an autonomous underwater vehicle for pipe manipulation tasks

    Get PDF
    Underwater object detection and recognition using computer vision are challenging tasks due to the poor light condition of submerged environments. For intervention missions requiring grasping and manipulation of submerged objects, a vision system must provide an Autonomous Underwater Vehicles (AUV) with object detection, localization and tracking capabilities. In this paper, we describe the integration of a vision system in the MARIS intervention AUV and its configuration for detecting cylindrical pipes, a typical artifact of interest in underwater operations. Pipe edges are tracked using an alpha-beta filter to achieve robustness and return a reliable pose estimation even in case of partial pipe visibility. Experiments in an outdoor water pool in different light conditions show that the adopted algorithmic approach allows detection of target pipes and provides a sufficiently accurate estimation of their pose even when they become partially visible, thereby supporting the AUV in several successful pipe grasping operations

    Object classification in semi structured enviroment using forward-looking sonar

    Get PDF
    La exploración submarina utilizando robots ha ido en aumento en los últimos años. La automatización de tareas tales como monitoreo, inspección y mantenimiento bajo el agua requiere la comprensión del entorno del robot. El reconocimiento de objetos en la escena se está convirtiendo en un problema crítico para estos sistemas. En este trabajo, se estudia una tubería de clasificación de objetos bajo el agua aplicada en imágenes acústicas adquiridas por Forward-Looking Sonar (FLS). La segmentación de objetos combina el umbral, la búsqueda de píxeles conectados y las técnicas de análisis de picos de intensidad. El descriptor del objeto extrae la intensidad y las características geométricas de los objetos detectados. Se presenta una comparación entre los clasificadores Máquina de vectores de soporte, Vecinos más cercanos a K y Árboles aleatorios. Se desarrolló una herramienta de código abierto para anotar y clasificar los objetos y evaluar su rendimiento de clasificación. El método propuesto segmenta y clasifica eficientemente las estructuras en la escena utilizando un conjunto de datos real adquirido por un vehículo submarino en un área de puerto. Los resultados experimentales demuestran la solidez y precisión del método descrito en este documento.The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper.• National Institute of Science and Technology - Integrated Oceanography and Multiple Uses of the Continental Shelf and Adjacent Ocean - Integrated Oceanography Center INCT-Mar COI funded by CNPq. Beca 610012/2011-8 • BS-NAVLOC (CAPES no 321/15, DGPU 7523 / 14-9, proyecto MEC PHBP14 / 00083)peerReviewe

    Image enhancement for underwater mining applications

    Get PDF
    The exploration of water bodies from the sea to land filled water spaces has seen a continuous increase with new technologies such as robotics. Underwater images is one of the main sensor resources used but suffer from added problems due to the environment. Multiple methods and techniques have provided a way to correct the color, clear the poor quality and enhance the features. In this thesis work, we present the work of an Image Cleaning and Enhancement Technique which is based on performing color correction on images incorporated with Dark Channel Prior (DCP) and then taking the converted images and modifying them into the Long, Medium and Short (LMS) color space, as this space is the region in which the human eye perceives colour. This work is being developed at LSA (Laboratório de Sistema Autónomos) robotics and autonomous systems laboratory. Our objective is to improve the quality of images for and taken by robots with the particular emphasis on underwater flooded mines. This thesis work describes the architecture and the developed solution. A comparative analysis with state of the art methods and of our proposed solution is presented. Results from missions taken by the robot in operational mine scenarios are presented and discussed and allowing for the solution characterization and validation

    Non-implementation of property rating practice, any impact on community healthcare in Bauchi Metropolis Nigeria?

    Get PDF
    The practice of rating real estate is essentially an internal revenue source, synonymous to tenement tax levied on the owner/occupier. Property rating in Nigeria is bedevilled by many factors that impeded its smooth implementation and operation, thus, this form of taxation yields zero revenue in Bauchi, due to failure of implementation. This study is aimed at measuring the impact of non-implementation of property rating on community healthcare in Bauchi metropolis of Nigeria. Two hundred and fifty (250) closed-ended questionnaires composed in five-level Likert scale were distributed to professionals in the field of real estate and facilities management, in the academia and estate firms, and two hundred and twenty one questionnaires (221) were mailed back for analysis. The Structural Equation Modelling (SEM) in IBM version of SPSS with AMOS was used to establish relationship between the variables. Findings from this study reveals that PRP does not command direct impact on community healthcare services, however, the services financed by property rating in the area of sanitation and sewage cleaning has the tendencies to curb the occurrence of diseases like cholera and malaria. Thus, it can be understood that a fully institutionalized practice of property rating could avert the outbreak of diseases

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version
    corecore