1,130 research outputs found

    On Elementary Theories of Ordinal Notation Systems based on Reflection Principles

    Full text link
    We consider the constructive ordinal notation system for the ordinal ϵ0{\epsilon_0} that were introduced by L.D. Beklemishev. There are fragments of this system that are ordinal notation systems for the smaller ordinals ωn{\omega_n} (towers of ω{\omega}-exponentiations of the height nn). This systems are based on Japaridze's provability logic GLP\mathbf{GLP}. They are closely related with the technique of ordinal analysis of PA\mathbf{PA} and fragments of PA\mathbf{PA} based on iterated reflection principles. We consider this notation system and it's fragments as structures with the signatures selected in a natural way. We prove that the full notation system and it's fragments, for ordinals ≥ω4{\ge\omega_4}, have undecidable elementary theories. We also prove that the fragments of the full system, for ordinals ≤ω3{\le\omega_3}, have decidable elementary theories. We obtain some results about decidability of elementary theory, for the ordinal notation systems with weaker signatures.Comment: 23 page

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Integrating a Global Induction Mechanism into a Sequent Calculus

    Full text link
    Most interesting proofs in mathematics contain an inductive argument which requires an extension of the LK-calculus to formalize. The most commonly used calculi for induction contain a separate rule or axiom which reduces the valid proof theoretic properties of the calculus. To the best of our knowledge, there are no such calculi which allow cut-elimination to a normal form with the subformula property, i.e. every formula occurring in the proof is a subformula of the end sequent. Proof schemata are a variant of LK-proofs able to simulate induction by linking proofs together. There exists a schematic normal form which has comparable proof theoretic behaviour to normal forms with the subformula property. However, a calculus for the construction of proof schemata does not exist. In this paper, we introduce a calculus for proof schemata and prove soundness and completeness with respect to a fragment of the inductive arguments formalizable in Peano arithmetic.Comment: 16 page

    {SCL} with Theory Constraints

    Get PDF
    We lift the SCL calculus for first-order logic without equality to the SCL(T) calculus for first-order logic without equality modulo a background theory. In a nutshell, the SCL(T) calculus describes a new way to guide hierarchic resolution inferences by a partial model assumption instead of an a priori fixed order as done for instance in hierarchic superposition. The model representation consists of ground background theory literals and ground foreground first-order literals. One major advantage of the model guided approach is that clauses generated by SCL(T) enjoy a non-redundancy property that makes expensive testing for tautologies and forward subsumption completely obsolete. SCL(T) is a semi-decision procedure for pure clause sets that are clause sets without first-order function symbols ranging into the background theory sorts. Moreover, SCL(T) can be turned into a decision procedure if the considered combination of a first-order logic modulo a background theory enjoys an abstract finite model property

    SCL with Theory Constraints

    Get PDF
    We lift the SCL calculus for first-order logic without equality to the SCL(T) calculus for first-order logic without equality modulo a background theory. In a nutshell, the SCL(T) calculus describes a new way to guide hierarchic resolution inferences by a partial model assumption instead of an a priori fixed order as done for instance in hierarchic superposition. The model representation consists of ground background theory literals and ground foreground first-order literals. One major advantage of the model guided approach is that clauses generated by SCL(T) enjoy a non-redundancy property that makes expensive testing for tautologies and forward subsumption completely obsolete. SCL(T) is a semi-decision procedure for pure clause sets that are clause sets without first-order function symbols ranging into the background theory sorts. Moreover, SCL(T) can be turned into a decision procedure if the considered combination of a first-order logic modulo a background theory enjoys an abstract finite model property.Comment: 22 page

    Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis

    Full text link
    The safety of infinite state systems can be checked by a backward reachability procedure. For certain classes of systems, it is possible to prove the termination of the procedure and hence conclude the decidability of the safety problem. Although backward reachability is property-directed, it can unnecessarily explore (large) portions of the state space of a system which are not required to verify the safety property under consideration. To avoid this, invariants can be used to dramatically prune the search space. Indeed, the problem is to guess such appropriate invariants. In this paper, we present a fully declarative and symbolic approach to the mechanization of backward reachability of infinite state systems manipulating arrays by Satisfiability Modulo Theories solving. Theories are used to specify the topology and the data manipulated by the system. We identify sufficient conditions on the theories to ensure the termination of backward reachability and we show the completeness of a method for invariant synthesis (obtained as the dual of backward reachability), again, under suitable hypotheses on the theories. We also present a pragmatic approach to interleave invariant synthesis and backward reachability so that a fix-point for the set of backward reachable states is more easily obtained. Finally, we discuss heuristics that allow us to derive an implementation of the techniques in the model checker MCMT, showing remarkable speed-ups on a significant set of safety problems extracted from a variety of sources.Comment: Accepted for publication in Logical Methods in Computer Scienc

    Incompleteness via paradox and completeness

    Get PDF
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) andWang (1955) in order to obtain formal undecidability results. A generalization of this method will then be presented whereby Russell’s paradox, a variant of Mirimano’s paradox, the Liar, and the Grelling-Nelson paradox may be uniformly transformed into incompleteness theorems. Some additional observations are then framed relating these results to the unification of the set theoretic and semantic paradoxes, the intensionality of arithmetization (in the sense of Feferman, 1960), and axiomatic theories of truth

    An Introduction to Mechanized Reasoning

    Get PDF
    Mechanized reasoning uses computers to verify proofs and to help discover new theorems. Computer scientists have applied mechanized reasoning to economic problems but -- to date -- this work has not yet been properly presented in economics journals. We introduce mechanized reasoning to economists in three ways. First, we introduce mechanized reasoning in general, describing both the techniques and their successful applications. Second, we explain how mechanized reasoning has been applied to economic problems, concentrating on the two domains that have attracted the most attention: social choice theory and auction theory. Finally, we present a detailed example of mechanized reasoning in practice by means of a proof of Vickrey's familiar theorem on second-price auctions
    • …
    corecore