56 research outputs found

    Building Extraction from Remote Sensing Images via an Uncertainty-Aware Network

    Full text link
    Building extraction aims to segment building pixels from remote sensing images and plays an essential role in many applications, such as city planning and urban dynamic monitoring. Over the past few years, deep learning methods with encoder-decoder architectures have achieved remarkable performance due to their powerful feature representation capability. Nevertheless, due to the varying scales and styles of buildings, conventional deep learning models always suffer from uncertain predictions and cannot accurately distinguish the complete footprints of the building from the complex distribution of ground objects, leading to a large degree of omission and commission. In this paper, we realize the importance of uncertain prediction and propose a novel and straightforward Uncertainty-Aware Network (UANet) to alleviate this problem. To verify the performance of our proposed UANet, we conduct extensive experiments on three public building datasets, including the WHU building dataset, the Massachusetts building dataset, and the Inria aerial image dataset. Results demonstrate that the proposed UANet outperforms other state-of-the-art algorithms by a large margin

    Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience (VesselGraph)

    Full text link
    Biological neural networks define the brain function and intelligence of humans and other mammals, and form ultra-large, spatial, structured graphs. Their neuronal organization is closely interconnected with the spatial organization of the brain's microvasculature, which supplies oxygen to the neurons and builds a complementary spatial graph. This vasculature (or the vessel structure) plays an important role in neuroscience; for example, the organization of (and changes to) vessel structure can represent early signs of various pathologies, e.g. Alzheimer's disease or stroke. Recently, advances in tissue clearing have enabled whole brain imaging and segmentation of the entirety of the mouse brain's vasculature. Building on these advances in imaging, we are presenting an extendable dataset of whole-brain vessel graphs based on specific imaging protocols. Specifically, we extract vascular graphs using a refined graph extraction scheme leveraging the volume rendering engine Voreen and provide them in an accessible and adaptable form through the OGB and PyTorch Geometric dataloaders. Moreover, we benchmark numerous state-of-the-art graph learning algorithms on the biologically relevant tasks of vessel prediction and vessel classification using the introduced vessel graph dataset. Our work paves a path towards advancing graph learning research into the field of neuroscience. Complementarily, the presented dataset raises challenging graph learning research questions for the machine learning community, in terms of incorporating biological priors into learning algorithms, or in scaling these algorithms to handle sparse,spatial graphs with millions of nodes and edges. All datasets and code are available for download at this https UR

    Generalizable deep learning based medical image segmentation

    Get PDF
    Deep learning is revolutionizing medical image analysis and interpretation. However, its real-world deployment is often hindered by the poor generalization to unseen domains (new imaging modalities and protocols). This lack of generalization ability is further exacerbated by the scarcity of labeled datasets for training: Data collection and annotation can be prohibitively expensive in terms of labor and costs because label quality heavily dependents on the expertise of radiologists. Additionally, unreliable predictions caused by poor model generalization pose safety risks to clinical downstream applications. To mitigate labeling requirements, we investigate and develop a series of techniques to strengthen the generalization ability and the data efficiency of deep medical image computing models. We further improve model accountability and identify unreliable predictions made on out-of-domain data, by designing probability calibration techniques. In the first and the second part of thesis, we discuss two types of problems for handling unexpected domains: unsupervised domain adaptation and single-source domain generalization. For domain adaptation we present a data-efficient technique that adapts a segmentation model trained on a labeled source domain (e.g., MRI) to an unlabeled target domain (e.g., CT), using a small number of unlabeled training images from the target domain. For domain generalization, we focus on both image reconstruction and segmentation. For image reconstruction, we design a simple and effective domain generalization technique for cross-domain MRI reconstruction, by reusing image representations learned from natural image datasets. For image segmentation, we perform causal analysis of the challenging cross-domain image segmentation problem. Guided by this causal analysis we propose an effective data-augmentation-based generalization technique for single-source domains. The proposed method outperforms existing approaches on a large variety of cross-domain image segmentation scenarios. In the third part of the thesis, we present a novel self-supervised method for learning generic image representations that can be used to analyze unexpected objects of interest. The proposed method is designed together with a novel few-shot image segmentation framework that can segment unseen objects of interest by taking only a few labeled examples as references. Superior flexibility over conventional fully-supervised models is demonstrated by our few-shot framework: it does not require any fine-tuning on novel objects of interest. We further build a publicly available comprehensive evaluation environment for few-shot medical image segmentation. In the fourth part of the thesis, we present a novel probability calibration model. To ensure safety in clinical settings, a deep model is expected to be able to alert human radiologists if it has low confidence, especially when confronted with out-of-domain data. To this end we present a plug-and-play model to calibrate prediction probabilities on out-of-domain data. It aligns the prediction probability in line with the actual accuracy on the test data. We evaluate our method on both artifact-corrupted images and images from an unforeseen MRI scanning protocol. Our method demonstrates improved calibration accuracy compared with the state-of-the-art method. Finally, we summarize the major contributions and limitations of our works. We also suggest future research directions that will benefit from the works in this thesis.Open Acces

    Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation

    Full text link
    Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and clinical drive for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage.Comment: 32 pages, 16 figures. Homepage: https://atm22.grand-challenge.org/. Submitte

    Data efficient deep learning for medical image analysis: A survey

    Full text link
    The rapid evolution of deep learning has significantly advanced the field of medical image analysis. However, despite these achievements, the further enhancement of deep learning models for medical image analysis faces a significant challenge due to the scarcity of large, well-annotated datasets. To address this issue, recent years have witnessed a growing emphasis on the development of data-efficient deep learning methods. This paper conducts a thorough review of data-efficient deep learning methods for medical image analysis. To this end, we categorize these methods based on the level of supervision they rely on, encompassing categories such as no supervision, inexact supervision, incomplete supervision, inaccurate supervision, and only limited supervision. We further divide these categories into finer subcategories. For example, we categorize inexact supervision into multiple instance learning and learning with weak annotations. Similarly, we categorize incomplete supervision into semi-supervised learning, active learning, and domain-adaptive learning and so on. Furthermore, we systematically summarize commonly used datasets for data efficient deep learning in medical image analysis and investigate future research directions to conclude this survey.Comment: Under Revie

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces

    Towards Interpretable Machine Learning in Medical Image Analysis

    Get PDF
    Over the past few years, ML has demonstrated human expert level performance in many medical image analysis tasks. However, due to the black-box nature of classic deep ML models, translating these models from the bench to the bedside to support the corresponding stakeholders in the desired tasks brings substantial challenges. One solution is interpretable ML, which attempts to reveal the working mechanisms of complex models. From a human-centered design perspective, interpretability is not a property of the ML model but an affordance, i.e., a relationship between algorithm and user. Thus, prototyping and user evaluations are critical to attaining solutions that afford interpretability. Following human-centered design principles in highly specialized and high stakes domains, such as medical image analysis, is challenging due to the limited access to end users. This dilemma is further exacerbated by the high knowledge imbalance between ML designers and end users. To overcome the predicament, we first define 4 levels of clinical evidence that can be used to justify the interpretability to design ML models. We state that designing ML models with 2 levels of clinical evidence: 1) commonly used clinical evidence, such as clinical guidelines, and 2) iteratively developed clinical evidence with end users are more likely to design models that are indeed interpretable to end users. In this dissertation, we first address how to design interpretable ML in medical image analysis that affords interpretability with these two different levels of clinical evidence. We further highly recommend formative user research as the first step of the interpretable model design to understand user needs and domain requirements. We also indicate the importance of empirical user evaluation to support transparent ML design choices to facilitate the adoption of human-centered design principles. All these aspects in this dissertation increase the likelihood that the algorithms afford interpretability and enable stakeholders to capitalize on the benefits of interpretable ML. In detail, we first propose neural symbolic reasoning to implement public clinical evidence into the designed models for various routinely performed clinical tasks. We utilize the routinely applied clinical taxonomy for abnormality classification in chest x-rays. We also establish a spleen injury grading system by strictly following the clinical guidelines for symbolic reasoning with the detected and segmented salient clinical features. Then, we propose the entire interpretable pipeline for UM prognostication with cytopathology images. We first perform formative user research and found that pathologists believe cell composition is informative for UM prognostication. Thus, we build a model to analyze cell composition directly. Finally, we conduct a comprehensive user study to assess the human factors of human-machine teaming with the designed model, e.g., whether the proposed model indeed affords interpretability to pathologists. The human-centered design process is proven to be truly interpretable to pathologists for UM prognostication. All in all, this dissertation introduces a comprehensive human-centered design for interpretable ML solutions in medical image analysis that affords interpretability to end users
    • …
    corecore