44 research outputs found

    RF MEMS reference oscillators platform for wireless communications

    Get PDF
    A complete platform for RF MEMS reference oscillator is built to replace bulky quartz from mobile devices, thus reducing size and cost. The design targets LTE transceivers. A low phase noise 76.8 MHz reference oscillator is designed using material temperature compensated AlN-on-silicon resonator. The thesis proposes a system combining piezoelectric resonator with low loading CMOS cross coupled series resonance oscillator to reach state-of-the-art LTE phase noise specifications. The designed resonator is a two port fundamental width extensional mode resonator. The resonator characterized by high unloaded quality factor in vacuum is designed with low temperature coefficient of frequency (TCF) using as compensation material which enhances the TCF from - 3000 ppm to 105 ppm across temperature ranges of -40˚C to 85˚C. By using a series resonant CMOS oscillator, phase noise of -123 dBc/Hz at 1 kHz, and -162 dBc/Hz at 1MHz offset is achieved. The oscillator’s integrated RMS jitter is 106 fs (10 kHz–20 MHz), consuming 850 μA, with startup time is 250μs, achieving a Figure-of-merit (FOM) of 216 dB. Electronic frequency compensation is presented to further enhance the frequency stability of the oscillator. Initial frequency offset of 8000 ppm and temperature drift errors are combined and further addressed electronically. A simple digital compensation circuitry generates a compensation word as an input to 21 bit MASH 1 -1-1 sigma delta modulator incorporated in RF LTE fractional N-PLL for frequency compensation. Temperature is sensed using low power BJT band-gap front end circuitry with 12 bit temperature to digital converter characterized by a resolution of 0.075˚C. The smart temperature sensor consumes only 4.6 μA. 700 MHz band LTE signal proved to have the stringent phase noise and frequency resolution specifications among all LTE bands. For this band, the achieved jitter value is 1.29 ps and the output frequency stability is 0.5 ppm over temperature ranges from -40˚C to 85˚C. The system is built on 32nm CMOS technology using 1.8V IO device

    A Review Of Implementing Adc In Rfid Sensor

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made.Region Rhone-Alpes (France)CNPq (Brazil)INCT/NAMITEC (Brazil)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    A Review of Implementing ADC in RFID Sensor

    Get PDF
    The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made

    A Review Of Implementing Adc In Rfid Sensor

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made.Region Rhone-Alpes (France)CNPq (Brazil)INCT/NAMITEC (Brazil)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Power efficient, event driven data acquisition and processing using asynchronous techniques

    Get PDF
    PhD ThesisData acquisition systems used in remote environmental monitoring equipment and biological sensor nodes rely on limited energy supply soured from either energy harvesters or battery to perform their functions. Among the building blocks of these systems are power hungry Analogue to Digital Converters and Digital Signal Processors which acquire and process samples at predetermined rates regardless of the monitored signal’s behavior. In this work we investigate power efficient event driven data acquisition and processing techniques by implementing an asynchronous ADC and an event driven power gated Finite Impulse Response (FIR) filter. We present an event driven single slope ADC capable of generating asynchronous digital samples based on the input signal’s rate of change. It utilizes a rate of change detection circuit known as the slope detector to determine at what point the input signal is to be sampled. After a sample has been obtained it’s absolute voltage value is time encoded and passed on to a Time to Digital Converter (TDC) as part of a pulse stream. The resulting digital samples generated by the TDC are produced at a rate that exhibits the same rate of change profile as that of the input signal. The ADC is realized in 0.35mm CMOS process, covers a silicon area of 340mm by 218mm and consumes power based on the input signal’s frequency. The samples from the ADC are asynchronous in nature and exhibit random time periods between adjacent samples. In order to process such asynchronous samples we present a FIR filter that is able to successfully operate on the samples and produce the desired result. The filter also poses the ability to turn itself off in-between samples that have longer sample periods in effect saving power in the process

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    Efficient time-to-digital converters in 20 nm FPGAs with wave union methods

    Get PDF
    The wave union (WU) method is a well-known method in time-to-digital converters (TDCs) and can improve TDC performances without consuming extra logic resources. However, a famous earlier study concluded that the WU method is not suitable for UltraScale field-programmable gate array (FPGA) devices, due to more severe bubble errors. This paper proves otherwise and presents new strategies to pursue high-resolution TDCs in Xilinx UltraScale 20 nm FPGAs. Combining our new sub-tapped delay line (sub-TDL) architecture (effective in removing bubbles and zero-width bins) and the WU method, we found that the wave union method is still powerful in UltraScale devices. We also compared the proposed TDC with the TDC combining the dual sampling (DS) structure and the sub-TDL technique. A binning method is introduced to improve the linearity. Moreover, we derived a formula of the total measurement uncertainties for a single-stage TDL-TDC to obtain its root-mean-square (RMS) resolution. Compared with previously published FPGA-TDCs, we presented (for the first time) much more detailed precision analysis for single-TDL TDCs

    Analog and Mixed Signal Design towards a Miniaturized Sleep Apnea Monitoring Device

    Get PDF
    Sleep apnea is a sleep-induced breathing disorder with symptoms of momentary and often repetitive cessations in breathing rhythm or sustained reductions in breathing amplitude. The phenomenon is known to occur with varying degrees of severity in literally millions of people around the world and cause a range of chronicle health issues. In spite of its high prevalence and serious consequences, nearly 80% of people with sleep apnea condition remain undiagnosed. The current standard diagnosis technique, termed polysomnography or PSG, requires the patient to schedule and undergo a complex full-night sleep study in a specially-equipped sleep lab. Due to both high cost and substantial inconvenience, millions of apnea patients are still undiagnosed and thus untreated. This research work aims at a simple, reliable, and miniaturized solution for in-home sleep apnea diagnosis purposes. The proposed solution bears high-level integration and minimal interference with sleeping patients, allowing them to monitor their apnea conditions at the comfort of their homes. Based on a MEMS sensor and an effective apnea detection algorithm, a low-cost single-channel apnea screening solution is proposed. A custom designed IC chip implements the apnea detection algorithm using time-domain signal processing techniques. The chip performs autonomous apnea detection and scoring based on the patient’s airflow signals detected by the MEMS sensor. Variable sensitivity is enabled to accommodate different breathing signal amplitudes. The IC chip was fabricated in standard 0.5-μm CMOS technology. A prototype device was designed and assembled including a MEMS sensor, the apnea detection IC chip, a PSoC platform, and wireless transceiver for data transmission. The prototype device demonstrates a valuable screening solution with great potential to reach the broader public with undiagnosed apnea conditions. In a battery-operated miniaturized medical device, an energy-efficient analog-to-digital converter is an integral part linking the analog world of biomedical signals and the digital domain with powerful signal processing capabilities. This dissertation includes the detailed design of a successive approximation register (SAR) ADC for ultra-low power applications. The ADC adopts an asynchronous 2b/step scheme that halves both conversion time and DAC/digital circuit’s switching activities to reduce static and dynamic energy consumption. A low-power sleep mode is engaged at the end of all conversion steps during each clock period. The technical contributions of this ADC design include an innovative 2b/step reference scheme based on a hybrid R-2R/C-3C DAC, an interpolation-assisted time-domain 2b comparison scheme, and a TDC with dual-edge-comparison mechanism. The prototype ADC was fabricated in 0.18μm CMOS process with an active area of 0.103 mm^(2), and achieves an ENoB of 9.2 bits and an FoM of 6.7 fJ/conversion-step at 100-kS/s

    128-channel high-linearity resolution- adjustable time-to-digital converters for LiDAR applications : software predictions and hardware implementations

    Get PDF
    This paper proposes a new calibration method, called the mixed-binning (MB) method, to pursue high-linearity time-to-digital converters (TDCs) for light detection and ranging (LiDAR) applications. The proposed TDCs were developed using tapped delay-line (TDL) cells in field-programmable gate arrays (FPGAs). With the MB method, we implemented a resolution-adjustable TDC showing excellent linearity in Xilinx UltraScale FPGAs. We demonstrate a 128-channel TDC to show that the proposed method is cost-effective in logic resources. We also developed a software tool to predict the performances of TDL-based TDCs robustly. Results from both software analysis and hardware implementations are in a good agreement and show that the proposed design has great potential for multichannel applications; the averaged DNL_(pk-pk) and INL_(pk-pk) are close to or even less than 0.05 LSB in multichannel designs
    corecore