372 research outputs found

    A sub-threshold differential cmos schmitt trigger with adjustable hysteresis based on body bias technique

    Get PDF
    This paper presents a sub-threshold differential CMOS Schmitt trigger with tunable hysteresis, which can be used to enhance the noise immunity of low-power electronic systems. By exploiting the body bias technique to the positive feedback transistors, the hysteresis of the proposed Schmitt trigger is generated, and it can be adjusted by the applied bias voltage to the bulk terminal of the utilized PMOS transistors. The principle of operation and the main formulas of the proposed circuit are discussed. The circuit is designed in a 0.18-μm standard CMOS process with a 0.6 V power supply. Post-layout simulation results show that the hysteresis width of the Schmitt trigger can be adjusted from 45.5 mV to 162 mV where the ratio of the hysteresis width variation to supply voltage is 19.4%. This circuit consumes 10.52 × 7.91 μm2 of silicon area, and its power consumption is only 1.38 μW, which makes it a suitable candidate for low-power applications such as portable electronic, biomedical, and bio-implantable systems

    Design of a Transimpedance Amplifier for an Optical Receiver

    Get PDF
    In today’s world, technology is so developed that it is possible to transmit huge amounts of data in a short time. In the experiments with high energy levels in laboratories carried out in CERN, it is essential to have a method capable of carrying all this information and at the same time of being tolerant to the radiation from these same experiments. Optical fibres are currently the best method transmitting the data created by these experiments. In order to receive the information from the optical fibre a Photodiode (PD) is used to produce current from the light of the optical fibre. This current is however small. It is necessary to use an amplifier which, in addition to amplifying the current coming from the photodiode, also converts it into a voltage for the next phases of the optical receiver. These amplifiers are known as transimpedance amplifiers and are the critical part of optical receivers since an high gain is required to amplify the current from the photodiode and at the same time a high bandwidth to receive the hight data rate signals. This thesis presents a complete analysis of these amplifiers, showing various types of topologies and their pros and cons. In order to arrive at the amplifier with the desired characteristics, this thesis uses mathematical equations that allow us to describe the operation of the Transimpedance Amplifier (TIA) and to determine the optimal range between the gain, the bandwidth and the noise of the amplifier (input referred noise). All the theoretical expressions as well as the behaviour of the whole system was verified using electrical simulations

    ULTRALOW-POWER, LOW-VOLTAGE DIGITAL CIRCUITS FOR BIOMEDICAL SENSOR NODES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Ultra-low Power FinFET SRAM Cell with improved stability suitable for low power applications

    Get PDF
    In this paper, a new 11T SRAM cell using FinFET technology has been proposed, the basic component of the cell is the 6T SRAM cell with 4 NMOS access transistors to improve the stability and also makes it a dual port memory cell. The proposed cell uses a header scheme in which one extra PMOS transistor is used which is biased at different voltages to improve the read and write stability thus, helps in reducing the leakage power and active power. The cell shows improvement in RSNM (Read Static Noise Margin) with LP8T by 2.39x at sub-threshold voltage 2.68x with D6T SRAM cell, 5.5x with TG8T. The WSNM (Write Static Noise Margin) and HM (Hold Margin) of the SRAM cell at 0.9V is 306mV and 384mV. At sub-threshold operation also it shows improvement. The Leakage power reduced by 0.125x with LP8T, 0.022x with D6T SRAM cell, TG8T and SE8T. Also, impact of process variation on cell stability is discussed

    -Memory Computing Based Reliable and High Speed Schmitt trigger 10T SRAM cell design

    Get PDF
    Static random access memories (SRAM) are useful building blocks in various applications, including cache memories, integrated data storage systems, and microprocessors. The von Neumann bottleneck difficulties are solved by in-memory computing. It eliminates unnecessary frequent data transfer between memory and processing units simultaneously. In this research, the replica-based 10T SRAM design for in-memory computing (IMC) is designed by adapting the word line control scheme in 14nm CMOS technology. In order to achieve high reading and writing capability, the Schmitt trigger inverter was used for energy-saving and stable use. To speed up the writing process of the design, a single transistor is inserted between the cross-coupled inverters. In addition, to increase the node capacity, the voltage boosting circuitry is emphasized. The adaptive word line control scheme was utilized by integrating the replica column based circuit. The Replica approach regulates signal flow through the core by using a dummy column and a dummy row in RAM. To demonstrate the viability of the suggested design, the simulated outcomes are contrasted with those of existing designs. The various performance metrics examined are Read Static Noise Margin (RSNM), Write (WSNM), Hold (HSNM), Read Access Delay (RAD), Write Access Delay (WAD), Read performance and Write performance the varying supply voltage is evaluated

    Analyzing stability concerns in the presence of variations in Subthreshold SRAM

    Get PDF
    In this work, we analyse the stability of the SRAM bitcells when operating in subthreshold supply voltages.We propose a new bit cell with higher stability than 6T Bitcell,that is able to discharge the bit lines in 41% less time than the 6T as it's discharge path is only of single transistor

    Digital-based analog processing in nanoscale CMOS ICs for IoT applications

    Get PDF
    The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen tary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consump tion, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this state ment through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 µm2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 µm2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 µVRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development

    Analysis and design of a subthreshold CMOS Schmitt trigger circuit

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2017.Nesta tese, o disparador Schmitt (ou Schmitt trigger) CMOS clássico (ST) operando em inversão fraca é analisado. A transferência de tensão DC completa é determinada, incluindo expressões analíticas para as tensões dos nós internos. A transferência de tensão DC resultante do ST apresenta um comportamento contínuo mesmo na presença da histerese. Nesse caso, a característica da tensão de saída entre os limites da histerese é formada por um segmento metaestável, que pode ser explicado em termos das resistências negativas dos subcircuitos NMOS e PMOS do ST. A tensão mínima para o aparecimento da histerese é determinada fazendo-se a análise de pequenos sinais. A análise de pequenos sinais também é utilizada para a estimativa da largura do laço de histerese. É mostrado que a histerese não aparece para tensões de alimentação menores que 75 mV em 300 K. A análise do ST operando como amplificador também foi feita. A razão ótima dos transistores foi determinada com o objetivo de se maximizar o ganho de tensão. A comparação do disparador Schmitt com o inversor CMOS convencional destaca as vantagens e desvantagens de cada um para aplicações de ultra-baixa tensão. Também é mostrado que o ST é teoricamente capaz de operar (com ganho de tensão absoluto ?1) com uma tensão de alimentação tão baixa quanto 31.5 mV, a qual é menor do que o conhecido limite prévio de 36 mV, para o inversor convencional. Como amplificador, o ST possui ganho de tensão absoluto consideravelmente maior que o inversor convencional na mesma tensão de alimentação. Três circuitos integrados foram projetados e fabricados para estudar o comportamento do ST com tensões de alimentação entre 50 mV e 1000 mV.Abstract : In this thesis, the classical CMOS Schmitt trigger (ST) operating in weak inversion is analyzed. The complete DC voltage transfer characteristic is determined, including analytical expressions for the internal node voltage. The resulting voltage transfer characteristic of the ST presents a continuous output behavior even when hysteresis is present. In this case, the output voltage characteristic between the hysteresis limits is formed by a metastable segment, which can be explained in terms of the negative resistance of the NMOS and PMOS subcircuits of the ST. The minimum supply voltage at which hysteresis appears is determined carrying out small-signal analysis, which is also used to estimate the hysteresis width. It is shown that hysteresis does not appear for supply voltages lower than 75 mV at 300 K. The analysis of the ST operating as a voltage amplifier was also carried out. Optimum transistor ratios were determined aiming at voltage gain maximization. The comparison of the ST with the standard CMOS inverter highlights the relative benefits and drawbacks of each one in ULV applications. It is also shown that the ST is theoretically capable of operating (voltage gain ?1) at a supply voltage as low as 31.5 mV, which is lower than the well-known limit of 36 mV, for the standard CMOS inverter. As an amplifier, the ST shows considerable higher absolute voltage gains than those showed by the conventional inverter at the same supply voltages. Three test chips were designed and fabricated to study the operation of the ST at supply voltages between 50 mV and 1000 mV

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design and Implementation of an Integrated Biosensor Platform for Lab-on-a-Chip Diabetic Care Systems

    Get PDF
    Recent advances in semiconductor processing and microfabrication techniques allow the implementation of complex microstructures in a single platform or lab on chip. These devices require fewer samples, allow lightweight implementation, and offer high sensitivities. However, the use of these microstructures place stringent performance constraints on sensor readout architecture. In glucose sensing for diabetic patients, portable handheld devices are common, and have demonstrated significant performance improvement over the last decade. Fluctuations in glucose levels with patient physiological conditions are highly unpredictable and glucose monitors often require complex control algorithms along with dynamic physiological data. Recent research has focused on long term implantation of the sensor system. Glucose sensors combined with sensor readout, insulin bolus control algorithm, and insulin infusion devices can function as an artificial pancreas. However, challenges remain in integrated glucose sensing which include degradation of electrode sensitivity at the microscale, integration of the electrodes with low power low noise readout electronics, and correlation of fluctuations in glucose levels with other physiological data. This work develops 1) a low power and compact glucose monitoring system and 2) a low power single chip solution for real time physiological feedback in an artificial pancreas system. First, glucose sensor sensitivity and robustness is improved using robust vertically aligned carbon nanofiber (VACNF) microelectrodes. Electrode architectures have been optimized, modeled and verified with physiologically relevant glucose levels. Second, novel potentiostat topologies based on a difference-differential common gate input pair transimpedance amplifier and low-power voltage controlled oscillators have been proposed, mathematically modeled and implemented in a 0.18μm [micrometer] complementary metal oxide semiconductor (CMOS) process. Potentiostat circuits are widely used as the readout electronics in enzymatic electrochemical sensors. The integrated potentiostat with VACNF microelectrodes achieves competitive performance at low power and requires reduced chip space. Third, a low power instrumentation solution consisting of a programmable charge amplifier, an analog feature extractor and a control algorithm has been proposed and implemented to enable continuous physiological data extraction of bowel sounds using a single chip. Abdominal sounds can aid correlation of meal events to glucose levels. The developed integrated sensing systems represent a significant advancement in artificial pancreas systems
    corecore