753 research outputs found

    An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks

    Get PDF
    This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 ¿W in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network. © 2012 by the authors; licensee MDPI, Basel, Switzerland.This work has been partially funded by projects DPI2007-66796-C03-01 (Diseno, Evaluacion e Implementacion de una Red Subacuatica de Sensores-Ministerio de Educacion y Ciencia), PET2008-0011 (Investigacion basica fundamental sobre tecnologias constitutivas de un sistema de red inalambrica de sensores y su aplicacion para el desarrollo de una plataforma de redes inalambricas de sensores-Ministerio de Ciencia e Innovacion) and CTM2011-29691-C02-01 (Sonorizacion ambiental subacuatica para la inspeccion y monitorizacion de explotaciones de acuicultura marina-Ministerio de Ciencia e Innovacion).Sánchez Matías, AM.; Blanc Clavero, S.; Yuste Pérez, P.; Perles Ivars, ÁF.; Serrano Martín, JJ. (2012). An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks. Sensors. 12(6):6837-6856. https://doi.org/10.3390/s120606837S6837685612

    A proposal for modeling real hardware, weather and marine conditions for underwater sensor networks

    Get PDF
    Network simulators are useful for researching protocol performance, appraising new hardware capabilities and evaluating real application scenarios. However, these tasks can only be achieved when using accurate models and real parameters that enable the extraction of trustworthy results and conclusions. This paper presents an underwater wireless sensor network ecosystem for the ns-3 simulator. This ecosystem is composed of a new energy-harvesting model and a low-cost, low-power underwater wake-up modem model that, alongside existing models, enables the performance of accurate simulations by providing real weather and marine conditions from the location where the real application is to be deployed.The authors gratefully acknowledge financial support from CICYT (research projects CTM2011-29691-C02-01, TIN2011-28435-C03-01) and UPV (research project SP20120889).Climent, S.; Capella Hernández, JV.; Blanc Clavero, S.; Perles Ivars, A.; Serrano Martín, JJ. (2013). A proposal for modeling real hardware, weather and marine conditions for underwater sensor networks. Sensors. 13(6):7454-7471. https://doi.org/10.3390/s130607454S74547471136Aqua-Simhttp://obinet.engr.uconn.edu/NS-Miraclehttp://telecom.dei.unipd.it/Niyato, D., Hossain, E., Rashid, M., & Bhargava, V. (2007). Wireless sensor networks with energy harvesting technologies: a game-theoretic approach to optimal energy management. IEEE Wireless Communications, 14(4), 90-96. doi:10.1109/mwc.2007.4300988Data Publisher for Earth & Environmental Sciencehttp://www.pangaea.de/Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837AS3933-3D Low Frequency Wakeup Receiverhttp://www.austriamicro/protectsystems.comWorld Ocean Simulation Systemhttp://telecom.dei.unipd.it/ns/woss/Network Simulator 3 (ns-3)http://www.nsnam.or

    Event-Driven Data Gathering in Pure Asynchronous Multi-Hop Underwater Acoustic Sensor Networks

    Full text link
    [EN] In underwater acoustic modem design, pure asynchrony can contribute to improved wake-up coordination, thus avoiding energy-inefficient synchronization mechanisms. Nodes are designed with a pre-receptor and an acoustically adapted Radio Frequency Identification system, which wakes up the node when it receives an external tone. The facts that no synchronism protocol is necessary and that the time between waking up and packet reception is narrow make pure asynchronism highly efficient for energy saving. However, handshaking in the Medium Control Access layer must be adapted to maintain the premise of pure asynchronism. This paper explores different models to carry out this type of adaptation, comparing them via simulation in ns-3. Moreover, because energy saving is highly important to data gathering driven by underwater vehicles, where nodes can spend long periods without connection, this paper is focused on multi-hop topologies. When a vehicle appears in a 3D scenario, it is expected to gather as much information as possible in the minimum amount of time. Vehicle appearance is the event that triggers the gathering process, not only from the nearest nodes but from every node in the 3D volume. Therefore, this paper assumes, as a requirement, a topology of at least three hops. The results show that classic handshaking will perform better than tone reservation because hidden nodes annulate the positive effect of channel reservation. However, in highly dense networks, a combination model with polling will shorten the gathering time.Blanc Clavero, S. (2020). Event-Driven Data Gathering in Pure Asynchronous Multi-Hop Underwater Acoustic Sensor Networks. Sensors. 20(5):1-16. https://doi.org/10.3390/s20051407S116205Roy, A., & Sarma, N. (2018). Effects of Various Factors on Performance of MAC Protocols for Underwater Wireless Sensor Networks. Materials Today: Proceedings, 5(1), 2263-2274. doi:10.1016/j.matpr.2017.09.228Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wireless Communications and Mobile Computing, 2019, 1-20. doi:10.1155/2019/6470359Rudnick, D. L., Davis, R. E., Eriksen, C. C., Fratantoni, D. M., & Perry, M. J. (2004). Underwater Gliders for Ocean Research. Marine Technology Society Journal, 38(2), 73-84. doi:10.4031/002533204787522703Petritoli, E., & Leccese, F. (2018). High Accuracy Attitude and Navigation System for an Autonomous Underwater Vehicle (AUV). ACTA IMEKO, 7(2), 3. doi:10.21014/acta_imeko.v7i2.535Nam, H. (2018). Data-Gathering Protocol-Based AUV Path-Planning for Long-Duration Cooperation in Underwater Acoustic Sensor Networks. IEEE Sensors Journal, 18(21), 8902-8912. doi:10.1109/jsen.2018.2866837Sun, J., Hu, F., Jin, W., Wang, J., Wang, X., Luo, Y., … Zhang, A. (2020). Model-Aided Localization and Navigation for Underwater Gliders Using Single-Beacon Travel-Time Differences. Sensors, 20(3), 893. doi:10.3390/s20030893Wahid, A., Lee, S., Kim, D., & Lim, K.-S. (2014). MRP: A Localization-Free Multi-Layered Routing Protocol for Underwater Wireless Sensor Networks. Wireless Personal Communications, 77(4), 2997-3012. doi:10.1007/s11277-014-1690-6Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837Li, S., Qu, W., Liu, C., Qiu, T., & Zhao, Z. (2019). Survey on high reliability wireless communication for underwater sensor networks. Journal of Network and Computer Applications, 148, 102446. doi:10.1016/j.jnca.2019.102446Jiang, S. (2018). State-of-the-Art Medium Access Control (MAC) Protocols for Underwater Acoustic Networks: A Survey Based on a MAC Reference Model. IEEE Communications Surveys & Tutorials, 20(1), 96-131. doi:10.1109/comst.2017.2768802Chirdchoo, N., Soh, W., & Chua, K. C. (2008). RIPT: A Receiver-Initiated Reservation-Based Protocol for Underwater Acoustic Networks. IEEE Journal on Selected Areas in Communications, 26(9), 1744-1753. doi:10.1109/jsac.2008.081213Zenia, N. Z., Aseeri, M., Ahmed, M. R., Chowdhury, Z. I., & Shamim Kaiser, M. (2016). Energy-efficiency and reliability in MAC and routing protocols for underwater wireless sensor network: A survey. Journal of Network and Computer Applications, 71, 72-85. doi:10.1016/j.jnca.2016.06.005Khasawneh, A., Latiff, M. S. B. A., Kaiwartya, O., & Chizari, H. (2017). A reliable energy-efficient pressure-based routing protocol for underwater wireless sensor network. Wireless Networks, 24(6), 2061-2075. doi:10.1007/s11276-017-1461-xSánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2015). An Acoustic Modem Featuring a Multi-Receiver and Ultra-Low Power. Circuits and Systems, 06(01), 1-12. doi:10.4236/cs.2015.6100

    Underwater Acoustic Modems

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Due to the growing interest using underwater acoustic networks, there are more and more research papers about underwater communications. These papers are mainly focused on deployments and studies about the constraints of the underwater medium. The underwater acoustic channel is highly variable and the signal transmission can change according to environmental factors such as the temperature, pressure or salinity of the water. For this reason, it is important to know how these devices are developed and the maximum distance and data transfer rates they can achieve. To this end, this paper presents an exhaustive study of existing underwater acoustic modems where their main features are highlighted. We also review the main features of their hardware. All presented proposals in the research literature are compared with commercial underwater acoustic modems. Finally, we analyze different programs and improvements of existing network simulators that are often used to simulate and estimate the behavior of underwater networks.This work was supported by the Ministerio de Ciencia e Innovacion through the Plan Nacional de I+D+i 2008-2011 within the Subprograma de Proyectos de Investigacion Fundamental under Project TEC2011-27516. The associate editor coordinating the review of this paper and approving it for publication was Dr. Lei Shu. (Corresponding author: Jaime Lloret.)Sendra, S.; Lloret, J.; Jimenez, JM.; Parra-Boronat, L. (2015). Underwater Acoustic Modems. IEEE Sensors Journal. 16(11):4063-4071. https://doi.org/10.1109/JSEN.2015.2434890S40634071161

    Data Muling for Broadband and Long Range Wireless Underwater Communications

    Get PDF
    During the past years, there has been an increasing interest in the exploration of underwater wireless communications. This interest has been related mainly to the need for establishing a reliable way of transferring large amounts of data gathered on remote locations in the ocean. This data comes from environmental exploration, oil and gas industries, or marine data from Autonomous Underwater Vehicles (AUVs). These activities require innovative solutions that can provide high bitrates at low costs. With this in mind, and given the current solutions - Optical, Acoustic, and Radio Frequency -, there is the need to create a solution that takes advantage of each technology and overcomes their limitations. In the case of optical communications, they can provide high bitrates, but requires line of sight, and depend significantly on water turbidity. Although acoustic solutions can provide a large range of operation, they have a low bandwidth due to the frequency of operation, and so they are not suitable for transferring high amounts of data. Finally, current radio frequency (RF) solutions allow high bit rates but are limited by the operation range due to the substantial attenuation of electromagnetic waves underwater. With this in mind, it is possible to say that currently, there is no solution for broadband long-range underwater communications. This dissertation aims to develop a solution that allows the increase of throughput and range of underwater wireless communications. To achieve this, a set of underwater data mules will be used. They will take advantage of the high bitrates of RF wireless communications and the long-range associated with acoustic solutions. With this dissertation, communication protocols designed for delay and disruption tolerant networks (DTNs) will be explored, and a protocol that will enable the scheduling of mules will be proposed and implemented, taking advantage of an out-of-band acoustic channel for controlling the mules, and the DTN for data transfer. The solution will be evaluated in a freshwater testbed

    Underwater Sensor Nodes and Networks

    Get PDF
    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field.Lloret, J. (2013). Underwater Sensor Nodes and Networks. Sensors. 13(9):11782-11796. doi:10.3390/s130911782S1178211796139Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654Martinez, J. J., Myers, J. R., Carlson, T. J., Deng, Z. D., Rohrer, J. S., Caviggia, K. A., … Weiland, M. A. (2011). Design and Implementation of an Underwater Sound Recording Device. Sensors, 11(9), 8519-8535. doi:10.3390/s110908519Ardid, M., Martínez-Mora, J. A., Bou-Cabo, M., Larosa, G., Adrián-Martínez, S., & Llorens, C. D. (2012). Acoustic Transmitters for Underwater Neutrino Telescopes. Sensors, 12(4), 4113-4132. doi:10.3390/s120404113Baronti, F., Fantechi, G., Roncella, R., & Saletti, R. (2012). Wireless Sensor Node for Surface Seawater Density Measurements. Sensors, 12(3), 2954-2968. doi:10.3390/s120302954Mànuel, A., Roset, X., Rio, J. D., Toma, D. M., Carreras, N., Panahi, S. S., … Cadena, J. (2012). Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology. Sensors, 12(3), 3693-3719. doi:10.3390/s120303693Jollymore, A., Johnson, M. S., & Hawthorne, I. (2012). Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream. Sensors, 12(4), 3798-3813. doi:10.3390/s120403798Won, T.-H., & Park, S.-J. (2012). Design and Implementation of an Omni-Directional Underwater Acoustic Micro-Modem Based on a Low-Power Micro-Controller Unit. Sensors, 12(2), 2309-2323. doi:10.3390/s120202309Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837Shin, S.-Y., & Park, S.-H. (2011). A Cost Effective Block Framing Scheme for Underwater Communication. Sensors, 11(12), 11717-11735. doi:10.3390/s111211717Kim, Y., & Park, S.-H. (2011). A Query Result Merging Scheme for Providing Energy Efficiency in Underwater Sensor Networks. Sensors, 11(12), 11833-11855. doi:10.3390/s111211833Llor, J., & Malumbres, M. P. (2012). Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols? Sensors, 12(2), 1312-1335. doi:10.3390/s120201312Zhang, G., Hovem, J. M., & Dong, H. (2012). Experimental Assessment of Different Receiver Structures for Underwater Acoustic Communications over Multipath Channels. Sensors, 12(2), 2118-2135. doi:10.3390/s120202118Ramezani, H., & Leus, G. (2012). Ranging in an Underwater Medium with Multiple Isogradient Sound Speed Profile Layers. Sensors, 12(3), 2996-3017. doi:10.3390/s120302996Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. P. C. (2012). Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band. Sensors, 12(4), 4237-4264. doi:10.3390/s120404237Gao, M., Foh, C. H., & Cai, J. (2012). On the Selection of Transmission Range in Underwater Acoustic Sensor Networks. Sensors, 12(4), 4715-4729. doi:10.3390/s120404715Gómez, J. V., Sandnes, F. E., & Fernández, B. (2012). Sunlight Intensity Based Global Positioning System for Near-Surface Underwater Sensors. Sensors, 12(2), 1930-1949. doi:10.3390/s120201930Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization Algorithms of Underwater Wireless Sensor Networks: A Survey. Sensors, 12(2), 2026-2061. doi:10.3390/s120202026Moradi, M., Rezazadeh, J., & Ismail, A. S. (2012). A Reverse Localization Scheme for Underwater Acoustic Sensor Networks. Sensors, 12(4), 4352-4380. doi:10.3390/s120404352Lee, S., & Kim, K. (2012). Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks. Sensors, 12(5), 5486-5501. doi:10.3390/s120505486Mohamed, N., Jawhar, I., Al-Jaroodi, J., & Zhang, L. (2011). Sensor Network Architectures for Monitoring Underwater Pipelines. Sensors, 11(11), 10738-10764. doi:10.3390/s111110738Macias, E., Suarez, A., Chiti, F., Sacco, A., & Fantacci, R. (2011). A Hierarchical Communication Architecture for Oceanic Surveillance Applications. Sensors, 11(12), 11343-11356. doi:10.3390/s111211343Zhang, S., Yu, J., Zhang, A., Yang, L., & Shu, Y. (2012). Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation. Sensors, 12(1), 373-390. doi:10.3390/s120100373Climent, S., Capella, J. V., Meratnia, N., & Serrano, J. J. (2012). Underwater Sensor Networks: A New Energy Efficient and Robust Architecture. Sensors, 12(1), 704-731. doi:10.3390/s120100704Min, H., Cho, Y., & Heo, J. (2012). Enhancing the Reliability of Head Nodes in Underwater Sensor Networks. Sensors, 12(2), 1194-1210. doi:10.3390/s120201194Yoon, S., Azad, A. K., Oh, H., & Kim, S. (2012). AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks. Sensors, 12(2), 1827-1845. doi:10.3390/s120201827Caiti, A., Calabrò, V., Dini, G., Lo Duca, A., & Munafò, A. (2012). Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network. Sensors, 12(2), 1967-1989. doi:10.3390/s120201967Wu, H., Chen, M., & Guan, X. (2012). A Network Coding Based Routing Protocol for Underwater Sensor Networks. Sensors, 12(4), 4559-4577. doi:10.3390/s120404559Navarro, G., Huertas, I. E., Costas, E., Flecha, S., Díez-Minguito, M., Caballero, I., … Ruiz, J. (2012). Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir Estuary (Spain). Sensors, 12(2), 1398-1421. doi:10.3390/s120201398Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., & Hernández, L. (2012). Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors. Sensors, 12(2), 1468-1481. doi:10.3390/s12020146

    Cost-Effective and Energy-Efficient Techniques for Underwater Acoustic Communication Modems

    Get PDF
    Finally, the modem developed has been tested experimentally in laboratory (aquatic environment) showing that can communicates at different data rates (100..1200 bps) compared to state-of-the-art research modems. The software used include LabVIEW, MATLAB, Simulink, and Multisim (to test the electronic circuit built) has been employed.Underwater wireless sensor networks (UWSNs) are widely used in many applications related to ecosystem monitoring, and many more fields. Due to the absorption of electromagnetic waves in water and line-of-sight communication of optical waves, acoustic waves are the most suitable medium of communication in underwater environments. Underwater acoustic modem (UAM) is responsible for the transmission and reception of acoustic signals in an aquatic channel. Commercial modems may communicate at longer distances with reliability, but they are expensive and less power efficient. Research modems are designed by using a digital-signal-processor (DSP is expensive) and field-programmable-gate-array (FPGA is high power consuming device). In addition to, the use of a microcontroller is also a common practice (which is less expensive) but provides limited computational power. Hence, there is a need for a cost-effective and energy-efficient UAM to be used in budget limited applications. In this thesis different objectives are proposed. First, to identify the limitations of state-of-the-art commercial and research UAMs through a comprehensive survey. The second contribution has been the design of a low-cost acoustic modem for short-range underwater communications by using a single board computer (Raspberry-Pi), and a microcontroller (Atmega328P). The modulator, demodulator and amplifiers are designed with discrete components to reduce the overall cost. The third contribution is to design a web based underwater acoustic communication testbed along with a simulation platform (with underwater channel and sound propagation models), for testing modems. The fourth contribution is to integrate in a single module two important modules present in UAMs: the PSK modulator and the power amplifier

    Contribution to Research on Underwater Sensor Networks Architectures by Means of Simulation

    Full text link
    El concepto de entorno inteligente concibe un mundo donde los diferentes tipos de dispositivos inteligentes colaboran para conseguir un objetivo común. En este concepto, inteligencia hace referencia a la habilidad de adquirir conocimiento y aplicarlo de forma autónoma para conseguir el objetivo común, mientras que entorno hace referencia al mundo físico que nos rodea. Por tanto, un entorno inteligente se puede definir como aquel que adquiere conocimiento de su entorno y aplicándolo permite mejorar la experiencia de sus habitantes. La computación ubicua o generalizada permitirá que este concepto de entorno inteligente se haga realidad. Normalmente, el término de computación ubicua hace referencia al uso de dispositivos distribuidos por el mundo físico, pequeños y de bajo precio, que pueden comunicarse entre ellos y resolver un problema de forma colaborativa. Cuando esta comunicación se lleva a cabo de forma inalámbrica, estos dispositivos forman una red de sensores inalámbrica o en inglés, Wireless Sensor Network (WSN). Estas redes están atrayendo cada vez más atención debido al amplio espectro de aplicaciones que tienen, des de soluciones para el ámbito militar hasta aplicaciones para el gran consumo. Esta tesis se centra en las redes de sensores inalámbricas y subacuáticas o en inglés, Underwater Wireless Sensor Networks (UWSN). Estas redes, a pesar de compartir los mismos principios que las WSN, tienen un medio de transmisión diferente que cambia su forma de comunicación de ondas de radio a ondas acústicas. Este cambio hace que ambas redes sean diferentes en muchos aspectos como el retardo de propagación, el ancho de banda disponible, el consumo de energía, etc. De hecho, las señales acústicas tienen una velocidad de propagación cinco órdenes de magnitud menor que las señales de radio. Por tanto, muchos algoritmos y protocolos necesitan adaptarse o incluso rediseñarse. Como el despliegue de este tipo de redes puede ser bastante complicado y caro, se debe planificar de forma precisa el hardware y los algoritmos que se necesitan. Con esta finalidad, las simulaciones pueden resultar una forma muy conveniente de probar todas las variables necesarias antes del despliegue de la aplicación. A pesar de eso, un nivel de precisión adecuado que permita extraer resultados y conclusiones confiables, solamente se puede conseguir utilizando modelos precisos y parámetros reales. Esta tesis propone un ecosistema para UWSN basado en herramientas libres y de código abierto. Este ecosistema se compone de un modelo de recolección de energía y unmodelo de unmódemde bajo coste y bajo consumo con un sistema de activación remota que, junto con otros modelos ya implementados en las herramientas, permite la realización de simulaciones precisas con datos ambientales del tiempo y de las condiciones marinas del lugar donde la aplicación objeto de estudio va a desplegarse. Seguidamente, este ecosistema se utiliza con éxito en el estudio y evaluación de diferentes protocolos de transmisión aplicados a una aplicación real de monitorización de una piscifactoría en la costa del mar Mediterráneo, que es parte de un proyecto de investigación español (CICYT CTM2011-2961-C02-01). Finalmente, utilizando el modelo de recolección de energía, esta plataforma de simulación se utiliza para medir los requisitos de energía de la aplicación y extraer las necesidades de hardware mínimas.Climent Bayarri, JS. (2014). Contribution to Research on Underwater Sensor Networks Architectures by Means of Simulation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/3532

    An Acoustic Modem Featuring a Multi-Receiver and Ultra-Low Power

    Full text link
    [EN] Wireless technology for underwater communication possesses a wide range of potential application, but it is still a relatively unexplored area in many aspects concerning modems physical design. A step towards future deployment of underwater networks is the reduction of power consumption. Therefore, asynchronous wakeup systems need to be integrated within the physical layer design while avoiding the use of additional transducers. This paper offers a practical and generic solution to adapt data reception and transmission together with asynchronous wakeup sub-systems in acoustic underwater modem architectures using a low power and low cost solution. The proposal has been implemented in a real prototype with success.The translation of this paper was funded by the Universitat Politècnica de València, Spain.The authors gratefully acknowledge financial support from the CICYT. ANDREA: Automated Inspection and Remote Performance of Marine Fish Farms (CTM2011-29691-C02-01) and RIDeWAN: Research on Improvement of the Dependability of WSN-based Applications by Developing a Hybrid Monitoring Platform. (TIN2011-28435-C03-01).Sánchez Matías, AM.; Blanc Clavero, S.; Yuste Pérez, P.; Perles Ivars, A.; Serrano Martín, JJ. (2015). An Acoustic Modem Featuring a Multi-Receiver and Ultra-Low Power. Circuits and Systems. 6(1):1-12. https://doi.org/10.4236/cs.2015.61001S1126
    corecore