263 research outputs found

    A Computationally Efficient Online/Offline Signature Scheme for Underwater Wireless Sensor Networks

    Get PDF
    Underwater wireless sensor networks (UWSNs) have emerged as the most widely used wireless network infrastructure in many applications. Sensing nodes are frequently deployed in hostile aquatic environments in order to collect data on resources that are severely limited in terms of transmission time and bandwidth. Since underwater information is very sensitive and unique, the authentication of users is very important to access the data and information. UWSNs have unique communication and computation needs that are not met by the existing digital signature techniques. As a result, a lightweight signature scheme is required to meet the communication and computa‑ tion requirements. In this research, we present a Certificateless Online/Offline Signature (COOS) mechanism for UWSNs. The proposed scheme is based on the concept of a hyperelliptic curves cryptosystem, which offers the same degree of security as RSA, bilinear pairing, and elliptic curve cryptosystems (ECC) but with a smaller key size. In addition, the proposed scheme was proven secure in the random oracle model under the hyperelliptic curve discrete logarithm problem. A se‑ curity analysis was also carried out, as well as comparisons with appropriate current online/offline signature schemes. The comparison demonstrated that the proposed scheme is superior to the exist‑ ing schemes in terms of both security and efficiency. Additionally, we also employed the fuzzy‑based Evaluation‑based Distance from Average Solutions (EDAS) technique to demonstrate the effective‑ ness of the proposed scheme.publishedVersio

    Index to Defence Science Journal Volume 71 2021

    Get PDF

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Mobile underwater sensor networks for protection and security: field experience at the UAN11 experiment

    Get PDF
    The EU-funded project UAN (Underwater Acoustic Network) was aimed at conceiving, developing, and testing at sea an innovative and operational concept for integrating underwater and above-water sensors in a unique communication system to protect offshore and coastline critical infrastructures. This work gives details on the underwater part of the project. It introduces a set of original security features and gives details on the integration of autonomous underwater vehicles (AUVs) as mobile nodes of the network and as surveillance assets, acoustically controlled by the command and control center to respond against intrusions. Field results are given of the final UAN project sea trial, UAN11, held in May 2011 in Norway. During the experimental activities, a UAN composed of four fixed nodes, two AUVs, and one mobile node mounted on the supporting research vessel was operated continuously and integrated into a global protection system. In this article, the communication performance of the network is reported in terms of round-trip time, packet loss, and average delivery ratio. The major results of the experiment can be thus summarized: the implemented network structure was successful in continuously operating over five days with nodes seamlessly entering and exiting the network; the performance of the network varied greatly with fluctuations in the acoustic channel; the addition of security features induced a minor degradation in network performance with respect to channel variation; the AUVs were successfully controlled from a remote station through acoustic signals routed by the network

    Analysis of Security Attacks & Taxonomy in Underwater Wireless Sensor Networks

    Get PDF
    Abstract: Underwater Wireless Sensor Networks (UWSN) have gained more attention from researchers in recent years due to their advancement in marine monitoring, deployment of various applications, and ocean surveillance. The UWSN is an attractive field for both researchers and the industrial side. Due to the harsh underwater environment, own capabilities, open acoustic channel, it's also vulnerable to malicious attacks and threats. Attackers can easily take advantage of these characteristics to steal the data between the source and destination. Many review articles are addressed some of the security attacks and Taxonomy of the Underwater Wireless Sensor Networks. In this study, we have briefly addressed the Taxonomy of the UWSNs from the most recent research articles related to the well-known research databases. This paper also discussed the security threats on each layer of the Underwater Wireless sensor networks. This study will help the researcher’s design the routing protocols to cover the known security threats and help industries manufacture the devices to observe these threats and security issues

    Maritime Data Transfer Protocol (MDTP): A Proposal for a Data Transmission Protocol in Resource-Constrained Underwater Environments Involving Cyber-Physical Systems

    Get PDF
    The utilization of autonomous maritime vehicles is becoming widespread in operations that are deemed too hazardous for humans to be directly involved in them. One of the ways to increase the productivity of the tools used during missions is the deployment of several vehicles with the same objective regarding data collection and transfer, both for the benefit of human staff and policy makers. However, the interchange of data in such an environment poses major challenges, such as a low bandwidth and the unreliability of the environment where transmissions take place. Furthermore, the relevant information that must be sent, as well as the exact size that will allow understanding it, is usually not clearly established, as standardization works are scarce in this domain. Under these conditions, establishing a way to interchange information at the data level among autonomous maritime vehicles becomes of critical importance since the needed information, along with the size of the transferred data, will have to be defined. This manuscript puts forward the Maritime Data Transfer Protocol, (MDTP) a way to interchange standardized pieces of information at the data level for maritime autonomous maritime vehicles, as well as the procedures that are required for information interchange.SWARMs (Smart and Networking Underwater Robots in Cooperation Meshes) 1034 European research project. It is under Grant Agreement 1035 n.662107-SWARMs-ECSEL-2014-1 and is being partially supported by the Spanish Ministry of Economy and Competitiveness (Ref: PCIN-2014-022-C02-02) and the ECSEL JU

    Mobile underwater sensor networks for protection and security: field experience at the UAN11 experiment

    Get PDF
    An underwater acoustic network (UAN) represents a communication infrastructure that canoffer the necessary flexibility for continuous monitoring and surveillance of critical infras-tructures located by the sea. Given the current limitation of acoustic-based communicationmethods, a robust implementation of UANs is still an open research field. The FP7 UANproject addressed such a problem, and it reached the integration of a mobile underwatersensor network within a wide-area network, which included above water and underwatersensors, for protection and security. This paper describes some of the main results achievedduring the project. In particular, this work addresses solutions for the upper-layers of theUAN, with focus on the integration of autonomous underwater vehicles (AUVs) as mobilenodes of the network, and on the inclusion of network security mechanisms. The recent at-sea successes that have been demonstrated within the UAN framework are detailed. Resultsare given of the final UAN project demonstration, UAN11, held in the May of 2011, whenan underwater acoustic network composed by four fixed nodes, two autonomous underwa-ter vehicles (AUVs), and one mobile node mounted on the supporting research vessel, wascontinuously operated for one week, and integrated into a global protection system

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe
    • …
    corecore