83 research outputs found

    Masquerade Attack Detection Using a Search-Behavior Modeling Approach

    Get PDF
    Masquerade attacks are unfortunately a familiar security problem that is a consequence of identity theft. Detecting masqueraders is very hard. Prior work has focused on user command modeling to identify abnormal behavior indicative of impersonation. This paper extends prior work by presenting one-class Hellinger distance-based and one-class SVM modeling techniques that use a set of novel features to reveal user intent. The specific objective is to model user search profiles and detect deviations indicating a masquerade attack. We hypothesize that each individual user knows their own file system well enough to search in a limited, targeted and unique fashion in order to find information germane to their current task. Masqueraders, on the other hand, will likely not know the file system and layout of another user's desktop, and would likely search more extensively and broadly in a manner that is different than the victim user being impersonated. We extend prior research that uses UNIX command sequences issued by users as the audit source by relying upon an abstraction of commands. We devise taxonomies of UNIX commands and Windows applications that are used to abstract sequences of user commands and actions. We also gathered our own normal and masquerader data sets captured in a Windows environment for evaluation. The datasets are publicly available for other researchers who wish to study masquerade attack rather than author identification as in much of the prior reported work. The experimental results show that modeling search behavior reliably detects all masqueraders with a very low false positive rate of 0.1%, far better than prior published results. The limited set of features used for search behavior modeling also results in huge performance gains over the same modeling techniques that use larger sets of features

    Masquerade Detection in Automotive Security

    Get PDF
    In this paper, we consider intrusion detection systems (IDS) in the context of a controller area network (CAN), which is also known as the CAN bus. We provide a discussion of various IDS topics, including masquerade detection, and we include a selective survey of previous research involving IDS in a CAN network. We also discuss background topics and relevant practical issues, such as data collection on the CAN bus. Finally, we present experimental results where we have applied a variety of machine learning techniques to CAN data. We use both actual and simulated data in order to detect the status of a vehicle from its network packets as well as detect masquerade behavior on a vehicle network

    The Big Picture: Using Desktop Imagery for Detection of Insider Threats

    Get PDF
    The insider threat is one of the most difficult problems in information security. Prior research addresses its detection by using machine learning techniques to profile user behavior. User behavior is represented as low level system events, which do not provide sufficient contextual information about the user\u27s intentions, and lead to high error rates. Our system uses video of a user\u27s sessions as the representation of their behavior, and detects moments during which they perform sensitive tasks. Analysis of the video is accomplished using OCR, scene detection algorithms, and basic text classification. The system outputs the results to a web interface, and our results show that using desktop imagery is a viable alternative to using system calls for insider threat detection

    Dynamic Stability with Artificial Intelligence in Smart Grids

    Get PDF
    Environmental concerns are among the main drives of the energy transition in power systems. Smart grids are the natural evolution of power systems to become more efficient and sustainable. This modernization coincides with the vast and wide integration of energy generation and storage systems dependent on power electronics. At the same time, the low inertia power electronics, introduce new challenges in power system dynamics. In fact, the synchronisation capabilities of power systems are threatened by the emergence of new oscillations and the displacement of conventional solutions for ensuring the stability of power systems. This necessitates an equal modernization of the methods to maintain the rotor angle stability in the future smart grids. The applications of artificial intelligence in power systems are constantly increasing. The thesis reviews the most relevant works for monitoring, predicting, and controlling the rotor angle stability of power systems and presents a novel controller for power oscillation damping
    corecore