57 research outputs found

    Stability analysis of drinking epidemic models and investigation of optimal treatment strategy

    Get PDF
    In this research we investigate a class of drinking epidemic models, namely the SPARS type models. The basic reproduction number is derived, and the system dynamical behaviours are investigated for both drinking free equilibrium and drinking persistent equilibrium. The purpose is to determine the long term optimal treatment method and the optimal short period vaccination strategy for controlling the population of the periodic drinkers and alcoholics

    Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal Epidemics.

    Get PDF
    Seasonal and non-seasonal Susceptible-Exposed-Infective-Recovered-Susceptible (SEIRS) models are formulated and analyzed. It is proved that the disease-free steady state of the non-seasonal model is locally asymptotically stable if Rv \u3c 1, and disease invades if Rv \u3e 1. For the seasonal SEIRS model, it is shown that the disease-free periodic solution is locally asymptotically stable when R̅v \u3c 1, and I(t) is persistent with sustained oscillations when R̅v \u3e 1. Numerical simulations indicate that the orbit representing I(t) decays when R̅v \u3c 1 \u3c Rv. The seasonal SEIRS model with routine and pulse vaccination is simulated, and results depict an unsustained decrease in the maximum of prevalence of infectives upon the introduction of routine vaccination and a sustained decrease as pulse vaccination is introduced in the population. Mortality data of pneumonia and influenza is collected and analyzed. A decomposition of the data is analyzed, trend and seasonality effects ascertained, and a forecasting strategy proposed

    On some new mathematical models for infective diseases: analysis, equilibrium, positivity and vaccination controls

    Get PDF
    196 p.Por un lado, cuando la enfermedad se desarrolla mediante la transmisión de los agentes patógenos de un individuo enfermo a otro, como puede ser el caso del SIDA, o la gripe, se le llama enfermedad infecciosa, mientras que las enfermedades no-infecciosas se desarrollan sin la intervención de estos agentes, y normalmente se asocian a predisposiciones genéticas, ambientales o modos de vida específicos. Esto no significa que estas dos categorías no puedan solaparse, por ejemplo, la cirrosis y el cáncer de hígado se asocian firmemente a contraer hepatitis (una enfermedad infecciosa), aunque contraer esta enfermedad no es necesario para que incida el cáncer o la cirrosis. En otra enfermedades, las variables derivadas del ecosistema de los agentes de infección puede aumentar la complejidad de los parámetros de los modelos hasta un nivel donde estos se vuelven inservibles. En tales casos, como en el de las enfermedades causadas por ¿macro parásitos¿ tipo pulgas, trematodos u hongos, no se tienen en cuenta a la hora de modelizar, ya que las circunstancias ambientales en las que se da la infección y el numero de agentes infecciosos tienen tanta influencia en la enfermedad que la complejidad de los modelos aumenta hasta el punto de no poder describir correctamente.Por tanto, los modelos matemáticos mas eficaces se concentran en las enfermedades infecciosas de transmisión ¿rápida¿, donde la densidad de patógenos dentro del anfitrión y su ciclo de vida no son relevantes para el modelo. Epidemias típicas estudiadas suelen ser la gripe, tos ferina, tuberculosis, malaria, dengue, sarampión, difteria, etc¿La mecánica de estas enfermedades epidémicas comparte una serie de parámetros caracterizados por la transmisión de la enfermedad de infectados a no infectados, y típicamente contiene unos periodos de tiempo en donde la enfermedad no ha presentado los síntomas (periodo de incubación) pero el paciente se ha vuelto infectivo para otros. Mas tarde, los infectados muestran síntomas externos (infecciosos) de diferentes tipos e intensidades, dependiendo del tipo de enfermedad e individuos. Al cabo de cierto tiempo, que depende de cada enfermedad, la población infectada puede volver a recobrarse, siendo esta inmune a la enfermedad o susceptible de nuevo a otras infecciones. Los modelos epidémicos se refieren a las diversas clases de subpoblaciones relativas a la enfermedad usando los siguientes acrónimos:¿ La subpoblación susceptible (¿S¿), o la porción de individuos de la población total que es susceptible a ser infectada¿ La subpoblación infectada (¿E¿) son aquellos individuos de la población que ha sido contagiada por la enfermedad pero todavía no es capaz de producir nuevas infecciones. También se les llama población expuesta.¿ La subpoblación infecciosa (¿I¿) esta compuesta de aquellos individuos infectados que son capaces de transmitir la infección a otros individuos.¿ La subpoblación ¿recobrada¿ (¿R¿) se refiere a la población no enferma que no pertenece a la población susceptible. Se entiende que es inmune tras haber pasado la enfermedad y tener defensas activas contra ella, aunque otras veces dicha inmunidad se puede adquirir mediante otros medios.Este es el caso en algunos modelos epidémicos en el que se incluye también una subpoblación extra llamada ¿vacunados¿ (¿V¿).La suma total de las subpoblaciones se denomina población total (¿N¿)De esta forma se presentan una serie de modelos típicos con diferentes niveles de complejidad ¿ Modelos SI (Susceptible/Infeccioso)¿ Modelos SIR (Susceptible/Infeccioso/Recobrado)¿ Modelos SEIR (Susceptible/Expuesto/Infeccioso/Recobrado)¿ Modelos SVEIR (Susceptible/Vacunado/Expuesto/Infeccioso/Recobrado)En estos modelos pueden aplicar una función para representar la vacunación, a la que nos referiremos como Vc. . Según sea la naturaleza específica de las enfermedad y la reacción del sistema inmunitario del huésped, algunas variantes de los modelos, como el anterior, incluyen un nuevo "S" final en su correspondiente acrónimo (cf. SEIRS), como la etapa final de la enfermedad se remonta desde recuperó para susceptible. Dependiendo de la velocidad de la del proceso y el impacto en la salud de la población enferma, las fluctuaciones en la población total se pueden tener en cuenta. Por lo tanto, la tasa de producción de los recién nacidos y las tasas de mortalidad se tienen en cuenta aunque, por simplicidad, a veces la población se supone constante y estos parámetros se omiten en las ecuaciones.A la hora de controlar estas enfermedades hay varios métodos para reducir, en términos estadísticos, la probabilidad de infección sobre la población y la propagación de la enfermedad. Muchos de ellos implican la eliminación de cierta cantidad de individuos susceptibles o infectados de la población (sacrificio), o el aislamiento de lo conocido infectados del resto de los individuos sanos (cuarentena). La medicina tiene una larga historia con esta forma de control de la enfermedad, que en nuestros modelos se convertirían en las leyes de control. Estos métodos son genéricos y pueden aplicarse cuando la información acerca de la enfermedad es mínima. Sin embargo, los recursos necesarios utilizando estos métodos no siempre son menos intrusivo y son necesarios otros métodos más asequibles. Por lo tanto, la vacunación se considera una ley de control y de tal modo hay dos estrategias principales sobre cómo aplicarlas: Vacunación constante y vacunación impulsiva, siendo estas controladas por leyes basadas en datos de las subpoblaciones, etc.Las leyes de control de la vacunación pueden incluir observadores para estimar las subpoblaciones con el fin de sintetizar los controles basados en ellos. Un dato importante a tener en cuenta en relación con la vacunación es la siguiente: los modelos epidémicos nunca son (estado) controlables bajo cualquier ley de control de la vacunación y, lo que es equivalente, los modelos epidémicos siempre muestran (estado) una incontrolabilidad, por lo que no hay una ley de control que permita llevar a todas las subpoblaciones a los valores prescritos en un tiempo finito. La razón intuitiva para esta incontrolabilidad es que los modelos epidémicos describen transiciones entre las subpoblaciones y normalmente una persona que se infecta, siempre que no muere, pasa a lo largo de todas las fases de la enfermedad a través del tiempo por lo que esto hace imposible lograr con capacidad de control de la forma habitual. Sin embargo, debe tenerse en cuenta que la propiedad de "controlabilidad de salida" es un objetivo realizable, si la salida se define con alguna combinación de subpoblación. Por ejemplo, si la salida es la suma de expuestos + infecciosos, puede fijarse como la controlabilidad de salida observada subjetivas para fijar a cero esta salida. Si se define como la suma de los susceptibles + inmunes, puede fijarse como objetivo la controlabilidad de salida para arreglar esta salida para ellos emergente totales.Esta tesis doctoral versa sobre algunas propiedades en la dinámica de las clases de varios de los modelos epidémicos SIRS, SEIRS y SVEIRS. Se le da una mayor relevancia a las propiedades de estabilidad local (alrededor de los puntos de equilibrio) y global, así como a las reglas de vacunación que se implementan con el fin de eliminar asintóticamente la enfermedad y / o para mejorar su comportamiento transitorio hacia a erradicación en la práctica.Nuestros modelos epidémicos se pueden desarrollar ya sea con poblaciones normalizadas o no normalizadas (la población total es de unidad y de las subpoblaciones son fracciones de la unidad cuya suma iguala la unidad). En el primer caso, la evolución en el tiempo de las subpoblaciones se interpreta como un porcentaje de la cantidad de individuos de cada subpoblación en cada instante de tiempo. Otras propiedades de interés en el contexto de las ecuaciones diferenciales o sistemas de tiempo continuo o de tiempo discreto son: i) Estabilidad global/local: La estabilidad global de la población es irrelevante para los modelos normalizados, ya que todas las subpoblaciones están delimitadas para todos los tiempos. En el caso de los modelos de un-normalizada, es de interés en el caso de que la población total es ilimitado.ii) ii) Estabilidad parcial global/local: Es relevante tanto para ambos modelos normalizados/no normalizados, en el sentido de que las subpoblaciones expuestas e infecciosas son candidatas a converger asintóticamente a cero. De la misma forma, la suma de todas las otras subpoblaciones converge asintóticamente al total de la población.iii) iii) La permanencia de la infección: Se relaciona con el caso cuando las subpoblaciones expuestas/infecciosas no pueden eliminarse de manera. Si el modelo es permanente para cualquier condición inicial, entonces el punto de equilibrio libre de enfermedad (es decir, la que tiene cero subpoblaciones infectadas o infecciosas) no puede ser asintóticamente estable. iv) iv) La positividad de la solución: Dada la coherencia de los modelos en relación con la naturaleza de lo descrito, los modelos epidémicos no admiten subpoblaciones negativas. os modelos se describen mediante un conjunto de parámetros, siendo algunos de ellos depende de la especie tratados y algunos de ellos de la enfermedad en particular. En general los parámetros principales son :-Las tasas de natalidad de la población, , que se relacionan con la población que por unidad de tiempo, en promedio. -Las tasa de mortalidad natural relacionada con la muerte de las personas debido a la vejez y causas no relacionada con la enfermedad-A su vez, existe una tasa de mortalidad adicional causado por la enfermedad en la subpoblación infectada. Al igual que en la tasa de mortalidad natural, es proporcional a la inversa la vida, en promedio, de un individuo afectado por la enfermedad.-Ratios de transición de subpoblación infectada a infecciosa, de infecciosa a recuperada y de recuperada a susceptible de nuevoAsimismo, dado que tratamos con enfermedades infecciosas, se tiene en cuenta una constante transmisión de la enfermedad, que se define en función del tipo de modelo utilizado.-R0: número de reproducción básica, que se define como el número promedio de casos secundarios generados a partir de un caso primario medio en una subpopblación totalmente susceptible. Este numero se deriva del resto de los parámetros y depende del tipo de modelos, y en muchos aspectos es fundamental para comprender la naturaleza de las enfermedades y su evolución a través del tiempo. El número básico de reproducción se utiliza para estudiar el impacto global que una enfermedad puede producir en una población, como R0> 1 significaría que el número de personas infectadas aumentará con respecto a la generación anterior, y R0 <1 significaría lo contrario, una disminución del número de infectados. El valor de R0 entonces se obtiene multiplicando el tiempo de infectividad medio de una persona por la tasa media de infección de un individuo en una población libre de enfermedad.Desde un punto de vista matemático, sin embargo, este individuo infectado solitario en una población libre de enfermedad se considera una perturbación del estado libre de enfermedad, uno de los muchos posibles pequeños cambios realizados en un estado de equilibrio. Entonces, dadas las ecuaciones diferenciales que regulan la dinámica de estos modelos, el efecto general de cualquier perturbación en la evolución del sistema cuando está en un estado de equilibrio se puede calcular. Dada una serie de ecuaciones de la dinámica del sistema, podemos obtener la matriz jacobiana en el punto libre de enfermedad. Entonces, la obtención de los autovalores de esta matriz nos dará las tendencias (cuando las perturbaciones realizadas son pequeñas) a aumentar o disminuir de los diversos tipos de alteraciones que se pueden hacer a este estado libre de enfermedad. Cuando los autovalores son negativos, el sistema reacciona disminuyendo las subpoblaciones que han subido conforme al autovector asignado a dicho autovalor, y aumentar las subpoblaciones que han disminuido, hasta llegar otra vez al estado libre de enfermedad. Por lo tanto, se puede decir que el estado de equilibrio es, por lo menos, localmente estable.El numero de reproducción uno manifestación de todos los valores propios de la matriz jacobiana en el equilibrio. Considere un modelo SIR como en la sección anterior con un muerto y tarifas un recién nacido ¿ y ¿ respectivamente. La matriz Jacobiana característicaEl papel del número de reproducción en el estudio de la enfermedad no sólo se limitará a hacer predicciones sobre el estado libre de la enfermedad. En condiciones R0 también puede ser un parámetro útil en el estudio de otros estados de equilibrio de las enfermedades, donde la definición inicial hecha por los epidemiólogos no se puede aplicar a las situaciones específicas

    Impulsive Vaccination SEIR Model with Nonlinear Incidence Rate and Time Delay

    Get PDF
    This paper aims to discuss the delay epidemic model with vertical transmission, constant input, and nonlinear incidence. Some sufficient conditions are given to guarantee the existence and global attractiveness of the infection-free periodic solution and the uniform persistence of the addressed model with time delay. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results

    Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay

    Get PDF
    AbstractIn this study, we propose a new SVEIR epidemic disease model with time delay, and analyze the dynamic behavior of the model under pulse vaccination. Pulse vaccination is an effective strategy for the elimination of infectious disease. Using the discrete dynamical system determined by the stroboscopic map, we obtain an ‘infection-free’ periodic solution. We also show that the ‘infection-free’ periodic solution is globally attractive when some parameters of the model under appropriate conditions. The permanence of the model is investigated analytically. Our results indicate that a large vaccination rate or a short pulse of vaccination or a long latent period is a sufficient condition for the extinction of the disease

    SVEIRS: A New Epidemic Disease Model with Time Delays and Impulsive Effects

    Get PDF
    We first propose a new epidemic disease model governed by system of impulsive delay differential equations. Then, based on theories for impulsive delay differential equations, we skillfully solve the difficulty in analyzing the global dynamical behavior of the model with pulse vaccination and impulsive population input effects at two different periodic moments. We prove the existence and global attractivity of the “infection-free” periodic solution and also the permanence of the model. We then carry out numerical simulations to illustrate our theoretical results, showing us that time delay, pulse vaccination, and pulse population input can exert a significant influence on the dynamics of the system which confirms the availability of pulse vaccination strategy for the practical epidemic prevention. Moreover, it is worth pointing out that we obtained an epidemic control strategy for controlling the number of population input

    Stability and bifurcations in an epidemic model with varying immunity period

    Full text link
    An epidemic model with distributed time delay is derived to describe the dynamics of infectious diseases with varying immunity. It is shown that solutions are always positive, and the model has at most two steady states: disease-free and endemic. It is proved that the disease-free equilibrium is locally and globally asymptotically stable. When an endemic equilibrium exists, it is possible to analytically prove its local and global stability using Lyapunov functionals. Bifurcation analysis is performed using DDE-BIFTOOL and traceDDE to investigate different dynamical regimes in the model using numerical continuation for different values of system parameters and different integral kernels.Comment: 16 pages, 5 figure

    The stochastic extinction and stability conditions for a class of malaria epidemic models

    Full text link
    The stochastic extinction and stability in the mean of a family of SEIRS malaria models with a general nonlinear incidence rate is presented. The dynamics is driven by independent white noise processes from the disease transmission and natural death rates. The basic reproduction number R0R^{*}_{0}, the expected survival probability of the plasmodium E(e(μvT1+μT2))E(e^{-(\mu_{v}T_{1}+\mu T_{2})}), and other threshold values are calculated. A sample Lyapunov exponential analysis for the system is utilized to obtain extinction results. Moreover, the rate of extinction of malaria is estimated, and innovative local Martingale and Lyapunov functional techniques are applied to establish the strong persistence, and asymptotic stability in the mean of the malaria-free steady population. %The extinction of malaria depends on R0R^{*}_{0}, and E(e(μvT1+μT2))E(e^{-(\mu_{v}T_{1}+\mu T_{2})}). Moreover, for either R0<1R^{*}_{0}<1, or E(e(μvT1+μT2))<1R0E(e^{-(\mu_{v}T_{1}+\mu T_{2})})<\frac{1}{R^{*}_{0}}, whenever R01R^{*}_{0}\geq 1, respectively, extinction of malaria occurs. Furthermore, the robustness of these threshold conditions to the intensity of noise from the disease transmission rate is exhibited. Numerical simulation results are presented.Comment: arXiv admin note: substantial text overlap with arXiv:1808.09842, arXiv:1809.03866, arXiv:1809.0389
    corecore