644 research outputs found

    An SDP approach to multi-level crossing minimization

    Get PDF
    We present an approach based on semidefinite programs (SDP) to tackle the multi-level crossing minimization prob- lem. Thereby, we are given a layered graph (i.e., the graph´s vertices are assigned to multiple parallel levels) and ask for an ordering of the nodes on their levels such that, when draw- ing the graph with straight lines, the resulting number of crossings is minimized. Solving this step is crucial in the probably most widely used graph drawing scheme, the so- called Sugiyama framework. The problem has received a lot of attention both in the field of heuristics and exact methods. For a long time, integer linear programming (ILP) approaches were the only exact algorithms applicable at least to small graphs. Recently, SDP formulations for the special case of two levels were proposed and dominated the ILP for dense instances. In this paper, we present a new SDP formulation for the general multi-level version that, for two-levels, is even stronger than the aforementioned specialized SDP. As a side- product, we also obtain an SDP-based heuristic which in practice always gives (near-)optimal solutions. We conduct a large set of experiments, both on random- ized and on real-world instances, and compare our approach to a state-of-the-art ILP-based branch-and-cut implementa- tion. The SDP clearly dominates for denser graphs, while the ILP approach is usually faster for sparse instances. However, even for such sparse graphs, the SDP solves more instances to optimality than the ILP. In fact, there is no single instance the ILP solved, which the SDP did not. Overall, our experi- ments reveal that for sparse graphs, one should usually try to find an optimal solution with the ILP first. If this approach does not solve the instance to optimality within reasonable time, the SDP still has a good chance to do so. Being able to solve larger real-world instances than reported before, we are also able to evaluate heuristics for this problem. In this paper we do so for the traditional barycenter-heuristic (showing that it leaves a large gap to the true optimum) and the state-of-the-art upward-planarization method (showing that it is usually close to the optimum)

    An SDP Approach to Multi-level Crossing Minimization

    Full text link

    Local Guarantees in Graph Cuts and Clustering

    Full text link
    Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min s−ts-t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled ++ or −- and the goal is to produce a clustering that agrees with the labels as much as possible: ++ edges within clusters and −- edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max s−ts-t Cut: find an s−ts-t cut minimizing the largest number of cut edges incident on any node. We present the following results: (1)(1) an O(n)O(\sqrt{n})-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2)(2) a remarkably simple 77-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 4848), and (3)(3) a 1/(2+ε)1/(2+\varepsilon)-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the 1/(4+ε)1/(4+\varepsilon)-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful
    • …
    corecore